
Improved Guidelines and

Architecture for Secure Service

Composition

Deliverable D7.6

Editor Name Thomas Loruenser

Type Report

Dissem. Level Public

Release Date July 31, 2017

Version 1.0

Ref. Ares(2017)3838760 - 31/07/2017

D7.6 Guidelines and Architecture for Secure Service Composition

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 644962.

More information available at https://prismacloud.eu.

Copyright Statement

The work described in this document has been conducted within the PRISMACLOUD
project. This document reflects only the PRISMACLOUD Consortium view and the
European Union is not responsible for any use that may be made of the information
it contains. This document and its content are the property of the PRISMACLOUD
Consortium. All rights relevant to this document are determined by the applicable laws.
Access to this document does not grant any right or license on the document or its contents.
This document or its contents are not to be used or treated in any manner inconsistent with
the rights or interests of the PRISMACLOUD Consortium or the Partners detriment and
are not to be disclosed externally without prior written consent from the PRISMACLOUD
Partners.

Each PRISMACLOUD Partner may use this document in conformity with the PRIS-
MACLOUD Consortium Grant Agreement provisions.

https://prismacloud.eu

D7.6 Guidelines and Architecture for Secure Service Composition

Document information

Project Context

Work Package WP7 Composition of Next-Generation Secure Cloud Services

Task T7.3 Architecture and Guidelines for Secure Service Composition

Dependencies D7.4, D7.8, D5.3, D5.4, D5.7, D5.9, D5.10

Author List

Organization Name E-mail

AIT Thomas Lorünser thomas.loruenser@ait.ac.at

AIT Andreas Happe andreas.happe@ait.ac.at

AIT Stephan Krenn stephan.krenn@ait.ac.at

AIT Aleksandar Hudic aleksandar.hudic@ait.ac.at

XiTrust Katrin Riemer katrin.riemer@xitrust.com

UNIL Thomas Länger thomas.laenger@unil.ch

ETRA Alberto Zambrano

IBM Micha Moffie

ATOS Angel Palomares

UNEW Ioannis Sfyrakis ioannis.sfyrakis@newcastle.ac.uk

ETRA Ana Martinez

UNI PASSAU Henrich C. Pöhls hp@sec.uni-passau.de

Reviewer List

Organization Name E-mail

FCSR Eleonora Ciceri ciceri.eleonora@hsr.it

UNIL Thomas Laenger thomas.laenger@unil.ch

D7.6 Guidelines and Architecture for Secure Service Composition

Version History

Version Date Reason/Change Editor

0.01 2016-10-12 Started with content from D7.5. Thomas Lorünser

0.02 2017-05-18 Added encryption proxy service de-
scription (EPaaS).

Alberto Zambrano

0.03 2017-05-18 Added BDA service description
(BDAaaS).

Micha Moffie and
Thomas Lorünser

0.04 2017-05-23 Added verifiable statistics service
(VSaaS).

Angel Palomares and
Thomas Lorünser

0.05 2017-06-01 Added infrastructure auditing ser-
vice (IAaaS).

Ioannis Sfyrakis

0.06 2017-06-23 Added PIDM service description
(PIDMaaS).

Ana Martinez

0.07 2017-07-06 Sanitizing service descriptions. Thomas Lorünser

0.08 2017-07-13 Update IAaaS service. Ioannis Sfyrakis

0.09 2017-07-14 Updated SAEaaS description and
threat table.

Katrin Riemer

0.10 2017-07-17 Updated SAEaaS description with
information on the XML message
handling

Henrich C. Pöhls

0.11 2017-07-19 SAEaaS threat analysis on XML
Format and info for SAE service,
minor updates and additions

Henrich C. Pöhls

0.12 2017-07-20 Added design patterns subsection Thomas Länger

0.13 2017-07-20 Update SWOT info for services. Thomas Lorünser

0.20 2017-07-29 Address final reviewer comments. Thomas Lorünser

1.0 2017-07-31 Final fixes for submission. Thomas Lorünser

D7.6 Guidelines and Architecture for Secure Service Composition

Executive Summary

This report covers the results of “Task 7.3 Architecture and guidelines for secure service
composition”. In particular, it presents the Prismacloud architecture and the associated
development methodology called Cryptographic Software Development Lifecycle (CryptS-
DLC). It also provides recommendations for the implementation of a service development
lifecycle on the basis of CryptSDLC and defines a project wide documentation standard
for services. Additionally, the report provides a full set of service documentation accord-
ing to the standard. The report is based on preliminary version “D7.5 First version of
guidelines and architecture for secure service composition‘”, which was released internally
in M18.

The Prismacloud project is a huge undertaking and produces outcome in many differ-
ent disciplines and layers. The PRISMACLOUD architecture facilitates a way to
structure and categorize the technical outcomes, but more importantly to improve service
development processes and project communication. It provides a tangible abstraction of
the complexity involved with the construction of cryptographically secured services and
will provide the project context for the research and development activities in the different
work packages.

Together with the architecture, we also established a development methodology which
leverages the architectural layers in order to improve the quality and efficiency of applica-
tion development and to maximize the potential reuse of existing work. The CryptSDLC
methodology enriches well known security-by-design approaches with a work flow for cryp-
tographic service design. Furthermore, it standardizes the special steps necessary when
going from one layer to the other and aligns them to the general phases of classical SDL
models. The major steps are Derive, Translate and Map from top to bottom and Prove,
Deploy and Extract from bottom to top.

Based on the conceptual results, we specified the guidelines for service development,
which give concrete recommendations for the implementation of the service development
process. They specify in detail which development methodlogies should be adopted and
how they can be enriched with the new concept. They define concrete phases and steps
as well as document artefacts to support the work flow. Out of that, we also defined a
project standard to be used in the service development for the Prismacloud services.

In addition to the methodological work, this document also presents the documentation
of services according to the proposed project standard. For this interim version, the two
most mature services have been selected for the proposed guidelines to be applied. We
selected the Secure Archiving and Data Sharing services which are both instantiations of
the Secure Object Storage tool. This part was done to test and evaluate the proposed
approach on a real world scenario. However, the final version of the document will con-
tain an improved version of the methodology as well as the full documentation of all 8
Prismacloud services.

This document is intended to be used by cloud service providers or middleware and system
developers who intend to either adopt Prismacloud services or make variants thereof.

1 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

It should serve as a starting point and reference, because it contains the core service
documentation, i.e., the underlying key ideas and the benefits, service and deployment
model information, as well as software development and assurance monitoring information
for the Prismacloud services.

1 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Table of Contents

Executive Summary 1

List of Figures 7

List of Tables 8

1 Introduction 10

1.1 Scope of the document . 10

1.2 Relation to other project work . 11

1.3 Structure of the document . 12

2 Prismacloud Architecture 13

2.1 Motivation and Idea . 13

2.2 Architecture Layers . 15

2.2.1 Primitives Layers . 15

2.2.2 Tools Layer . 17

2.2.3 Service Layer . 18

2.2.4 Application Layer . 21

2.3 Benefits of the Architecture . 22

2.4 A New Development Methodology . 25

2.5 Design Patterns for Inter Domain Communication 26

3 Guidelines for Composing Secure Services 30

3.1 Overview . 30

3.2 Requirements Engineering . 32

3.3 From Primitives to Tools . 33

3.3.1 Universal Composability . 33

3.3.2 Direct Construction of High-Level Primitives 35

3.4 From Tools to Services . 36

3.5 Design, Development and Deployment . 38

3.5.1 CloudSDL from SECCRIT . 38

3.5.2 Microsoft SDL . 41

3.5.3 SECCRIT Assurance Monitoring . 44

3.5.4 Secure deployment . 45

3.6 Standard Identity Provisioning and Management 47

2 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

4 Prismacloud Services 50

4.1 Secure Archiving (SAaaS) . 50

4.1.1 Overview . 50

4.1.2 Key Features . 50

4.1.3 Usage model and stakeholders . 54

4.1.4 Service Model and Interaction Dynamics 54

4.1.5 Provider/Consumer Scope of Control 55

4.1.6 Parameters . 57

4.1.7 Application Development . 57

4.1.8 Operational Aspects . 62

4.2 Data Sharing (DSaaS) . 66

4.2.1 Overview . 66

4.2.2 Key Features. 67

4.2.3 Usage Model and Stakeholders . 67

4.2.4 Service Model and Interaction Dynamics 70

4.2.5 Provider/Consumer Scope of Control 72

4.2.6 Parameters . 73

4.2.7 Application Development . 73

4.2.8 Operational Aspects . 76

4.3 Selective Authentic Exchange (SAEaaS) . 77

4.3.1 Overview . 77

4.3.2 Key Features . 79

4.3.3 Usage Model and Stakeholders . 80

4.3.4 Service Model and Interaction Dynamics 80

4.3.5 Provider/Consumer Scope of Control 83

4.3.6 Parameters . 84

4.3.7 Application Development . 84

4.4 Privacy Enhancing IDM (PIDMaaS) . 85

4.4.1 Overview . 85

4.4.2 Key Features . 86

4.4.3 Usage Model and Stakeholders . 88

4.4.4 Service Model and Interaction Dynamics 89

4.4.5 Provider/Consumer Scope of Control 89

4.4.6 Parameters . 90

4.4.7 Application Development . 90

3 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

4.5 Verifiable Statistics (VSaaS) . 91

4.5.1 Overview . 91

4.5.2 Key Features . 92

4.5.3 Usage model and stakeholders . 92

4.5.4 Service Model and Interaction Dynamics 94

4.5.5 Provider/Consumer Scope of Control 94

4.5.6 Application Development . 95

4.6 Infrastructure Auditing (IAaaS) . 98

4.6.1 Overview . 98

4.6.2 Key Features . 99

4.6.3 Usage Model and Stakeholders . 100

4.6.4 Service Model and Interaction Dynamics 102

4.6.5 Provider/Consumer Scope of Control 103

4.6.6 Parameters . 104

4.6.7 Application Development . 104

4.7 Encryption Proxy (EPaaS) . 106

4.7.1 Overview . 106

4.7.2 Key Features . 107

4.7.3 Usage Model and Stakeholders . 108

4.7.4 Service Model and Interaction Dynamics 109

4.7.5 Provider/Consumer Scope of Control 109

4.7.6 Parameters . 111

4.7.7 Application Development . 111

4.8 Big Data Anonymization (BDAaaS) . 113

4.8.1 Overview . 113

4.8.2 Key Features . 113

4.8.3 Usage Model and Stakeholders . 113

4.8.4 Service Model and Interaction Dynamics 114

4.8.5 Provider/Consumer Scope of Control 115

4.8.6 Paramters . 115

4.8.7 Application Development . 116

4.8.8 Operational Aspects . 121

5 Summary and Conclusions 122

4 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Bibliography 127

A Toolkit Overview 128

A.1 Secure Object Storage Tool (SECSTOR) . 128

A.2 Flexible Authentication with Selective Disclosure Tool (FLEXAUTH) . . . 130

A.3 Verifiable Data Processing Tool (VERIDAT) 131

A.4 Topology Certification Tool (TOPOCERT) 133

A.5 Data Privacy Tool (DATAPRIV) . 134

B Threat Analysis Results 135

B.1 Threats for Secure Archiving . 135

B.1.1 Tampering . 135

B.1.2 Denial Of Service . 135

B.1.3 Spoofing . 136

B.1.4 Information Disclosure . 136

B.1.5 Repudiation . 136

B.1.6 Elevation Of Privilege . 137

B.2 Threats for Secure Sharing . 137

B.2.1 Tampering . 137

B.2.2 Denial Of Service . 137

B.2.3 Spoofing . 138

B.2.4 Information Disclosure . 138

B.2.5 Repudiation . 138

B.2.6 Elevation Of Privilege . 139

B.3 Threats for Encryption Proxy . 139

B.3.1 Denial of service . 139

B.3.2 Elevation Of Privilege . 140

B.3.3 Information Disclosure . 140

B.3.4 Repudiation . 140

B.3.5 Spoofing . 140

B.3.6 Tampering . 140

B.4 Threats for Privacy enhancing IDM . 141

B.4.1 Denial Of Service . 141

B.4.2 Elevation Of Privilege . 141

B.4.3 Information Disclosure . 142

B.4.4 Repudiation . 142

5 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B.4.5 Spoofing . 142

B.4.6 Tampering . 142

B.5 Threats for Infrastructure Auditing . 143

B.5.1 Tampering . 143

B.5.2 Denial Of Service . 143

B.5.3 Spoofing . 144

B.5.4 Information Disclosure . 144

B.5.5 Repudiation . 144

B.5.6 Elevation Of Privilege . 145

6 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

List of Figures

1 The Prismacloud Architecture . 16

2 The Prismacloud services in the reference architecture. 21

3 Overview of the Prismacloud CryptSDLC Methodology. 23

4 Secure service development artifacts. 30

5 IT security document hierarchy. 31

6 Illustration of different deployment models for storage tool. 39

7 Cloud-service development life-cycle (CloudSDL.) 40

8 Production phase of secure cloud-service development life-cycle 44

9 Virtualization architectures [Pah15] . 45

10 Virtualization architectures using Containers [Pah15] 46

11 Mobile phone number and password request for the login 48

12 One-time password request for the login . 48

13 Secure Archiving (SA) overview. 51

14 SWOT analysis of Secure Archiving Service (SAaaS). 53

15 Interaction dynamics for secure archiving service. 56

16 Scope of contol secure archiving service deployment. 56

17 Attack surface model for secure archiving service. 58

18 STRIDE Threat & Mitigate Technique list (from OWASP) 61

19 Secure archiving assurance use case . 65

20 Data sharing (DS) overview. 68

21 SWOT of Data Sharing as a Service (DSaaS). 69

22 Interaction dynamics for data sharing service. 71

23 Overview of control scope for main type of stakeholders. 73

24 Attack surface model for the data sharing service. 75

25 Deployment and actors of the selective authentic exchange service 81

26 SWOT for the selective authentic exchange service 82

27 Attack surface model for the selective authentic exchange service 85

28 Privacy Enhancing IdM (PIDM) overview. 86

7 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

29 SWOT analysis of Privacy Enhancing IdM Service (PIDMaaS). 87

30 Diagram of the PIDMaaS elements. 89

31 Attack surface model for the Privacy enhancing IDM service. 90

32 Verifiable Statistics Service (VSaaS) in the Service Cloud Architecture. . . . 93

33 Attack surface model for the verify computing service. 96

34 Interaction: compute(Signed Data):signed compute data 96

35 SWOT analysis of Infrastructure Auditing Service. 100

36 Interaction dynamics for infrastructure auditing service 101

37 Scope of control for Infrastructure Auditing service deployment 103

38 Attack surface model for the infrastructure auditing service. 105

39 Encryption Proxy (EP) overview. 107

40 SWOT analysis of Encryption Proxy Service. 108

41 Interaction dynamics for encryption proxy service. 110

42 Scope of control encryption proxy service deployment. 110

43 Attack surface model for the encryption proxy service. 112

44 SWOT analysis of Secure Archiving Service (BDAaaS). 114

45 The architecture of the service . 115

46 Attack surface model for the anonymization service. 117

47 Secure Object Storage Tool (SECSTOR). 128

48 Flexible Authentication with Selective Disclosure Tool 131

49 Verifiable Data Processing Tool. 132

50 Topology Certification Tool. 133

51 Data Privacy Tool. 134

List of Tables

1 Portfolio of Prismacloud primitives and protocols. 17

2 Portfolio of Prismacloud tools. 17

3 Portfolio of Prismacloud services . 19

4 Assurance security properties and corresponding classes analyzed and de-
veloped under the scope of EU FP7 research project SECCRIT. 63

8 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

5 Assurance Class Integrity - Security Property System/Service Integrity . . . 64

6 Mapping requirements of the secure archiving service towards the assurance
security properties. 66

7 Features of the SECSTOR tool. 130

9 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

1 Introduction

This section is intended to give an overview of the document, introduce the expected
content, explain the project context and give the reader some guidance for quick access to
the most relevant information.

1.1 Scope of the document

The major purpose of this document is to describe how the Prismacloud primitives,
protocols and methods are combined and documented to build the Prismacloud ser-
vices. This document presents the results of work carried out in Task 7.3 Architecture
and guidelines for secure service composition. It is the final documentation of the ser-
vices developed in Prismacloud and built on the preliminary results presented in D7.5
“First guidelines and architecture for secure service composition‘”, which has been made
internally available in M18.

To achieve this goal we first developed the Prismacloud architecture, which provided
the context for project work during the implementation phase of Prismacloud. The re-
search and development activities in the project have been grouped according to this 4-tier
architectural model and it had been a valuable resource for structuring the work in the
project. Together with the architecture we also established a development methodol-
ogy which leverages the architectural layers in order to improve the quality and efficiency
of application development and to maximize the potential reuse of existing work. The
methodology is called Cryptographic Service Development LifeCycle (CryptSDLC) and
extends well known security-by-design approaches with a work flow suitable for crypto-
graphic design.

Based on the architecture and the methodology we specify guidelines for service de-
velopment, which are the second contribution of this document. The guidelines detail
recommendations for the implementation of the service development process and define
document artifacts that support the work flow. Out of that, we also defined a project
standard to be used in the service development for the Prismacloud services.

In addition to the methodological work, this document also presents the service docu-
mentation of all eight Prismacloud services according to the proposed project stan-
dard. Therefore, this document is best suited for cloud service providers or middleware
and system developers who intend to either adopt Prismacloud services or make variants
thereof. It serves as a starting point and reference, because it contains the core service
documentation, i.e., its key ideas and benefits, service and deployment model information
as well as software development information.

This report contributes to the following Prismacloud Objectives:

• Objective 4: Development of a methodology for secure service composition: With
the developed architecture and methodology for the composition of secure services
it clearly contributes to this objective. Also the guidelines developed are key to

10 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

implement appropriate processes during service development and also support ap-
plication level development in the best possible way and by design.
• Objective 3: Creation of enabling technologies for cloud infrastructures: The de-

velopment of the Prismacloud services as well as their standardized specification
and documentation greatly improves the development process and increases the ex-
ploitation potential. Furthermore, the architecture and development methodology
are intended to be broadly adopted and not only restricted to the specific service
developments we do in Prismacloud.

1.2 Relation to other project work

This report, like all other work done in “WP7 Composition of next-generation secure cloud
services”, is strongly related to all other technical work packages of the project. However,
for D7.6 this fact is particularly true because it introduces the Prismacloud architecture
and defines a project standard for secure service development. This architecture helped
to structure and align the efforts of all project partners towards the project goal, be-
ing the design, development, and validation of cryptographically enhanced cloud services
with improved security and privacy, transcending the current state-of-the-art. The Pris-
macloud architecture developed in WP7 is a central concept in Prismacloud and is
used throughout all other work packages.

In “WP3 End user and business deployment”, business and governance models are devel-
oped according to the architecture, and usability issues are investigated at various levels.
It is also in WP3, that cloud security patterns are developed and maintained for the single
proposed cloud services in support of the development process of tools and services, and
as basis for an impact analysis of what end users can expect with respect to security and
privacy when their applications rely on the proposed cloud services.

In “WP4 Advancement of enabling cryptographic primitives, protocols and schemes” and
“WP5 Basic building blocks for secure services” the architecture guides the research by
defining the goals to be achieved by the single tools on the cryptographic layer. The
current report includes an overview of the tools developed in WP5 in the Annex.

Please note, a preliminary version of the Prismacloud architecture has already been
introduced in D6.4 to support the selection and specification of tools for software imple-
mentation. Development and communication of the architecture had already been started
as early as M12, in order to streamline multidisciplinary project work in the project. How-
ever, the architecture has been developed in WP7 and is going to be fully introduced in
this report.

This report further contains guidelines and defines project wide standards for service devel-
opment influencing all tools and services development activities. The toolbox specification
in WP5 is guided by the principles described in this report and the software development
standards also apply to activities in WP6 (tool level) and WP7 (service level). The devel-
oped methodology is also closely related to the security and privacy by design guidelines
developed in “T7.1 Security and privacy by design” and the respective deliverable D7.1.

11 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

The methodology is specifically addressing the complexity and multidisciplinary nature
found when dealing with the integration of cryptography into services and applications.
It shall help to lower the entry bar for faster adoption of novel cryptographic solutions
in real world applications. It can be seen as a complementary more application design
oriented extension to the security and privacy by design approach discussed in T7.1.

Finally, this report presents main steps in secure service design applied to the particular
Prismacloud services. It presents the services in detail and the steps undertaken to
guarantee application security in service development as well as necessary operational
steps after deployment. Therefore, it serves as a reference for service development and
piloting in the project.

Furthermore, the report is complemented by other WP7 deliverables which are closely
related to service development, deployment and usage. In particular, the software archi-
tecture and service level interfaces are documented in “D7.8 Software architecture and
interface specification” (and follow-up deliverables D7.8 and D7.9), and “D7.3 Progress
report on holistic security model for secure service composition” (and follow-up deliverable
D7.4) are giving the application developers’ and service level view on the Prismacloud
services.

1.3 Structure of the document

This document is structured into three parts. In Section 2—the first part—the Pris-
macloud architecture is introduced and explained in detail as well as the development
methodology.

The second part in Section 3 presents the guideline for composition and development of the
Prismacloud services. It combines widely accepted standards from application develop-
ment with new ones specifically targeted at the cloud domain and further enriches them
with Prismacloud specific extensions that aid the development of secure cryptographic
services.

The third part in Section 4 applies the guidelines to the services. It contains as standard-
ized documentation of the eight Prismacloud services, which have been selected in the
project for piloting.

The summary and conclusion in Section 5 is dedicated to the experiences made during
development of the project architecture, guidelines and standards for secure service de-
velopment and the lessons learned during applying them for the documentation of the
Prismacloud services.

12 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

2 Prismacloud Architecture

The Prismacloud project is a huge undertaking and produces outcome in many different
disciplines and layers. To structure and categorize the technical outcomes, but more
importantly to improve service development processes and project communication, we
introduce the Prismacloud architecture.

The architecture is accompanied with a novel methodology for secure service design and
development and already provides a specific set of tools and services developed in the
Prismacloud project as a portfolio of standard solutions. This architecture is intended
to provide a tangible abstraction of the complexity involved with the construction of
cryptographically secured services and will provide the project context for the research
and development activities in the different work packages. For instance in WP7, the
Prismacloud architecture will be used to describe the services from the viewpoint of
service architects and software engineers.

While the Prismacloud architecture and methodology has been developed within WP7,
close cooperation has been established with all other work packages. A first version of
the architecture has already been integrated in WP6 deliverable D6.4 in order to support
a structured selection and specification of tools for software implementation. This was
a first—successful—test for the architecture and its use within the project-wide working
context. In this section we present the full architecture and how its intended use during
and after the project.

2.1 Motivation and Idea

The development of the specific Prismacloud architecture was driven by two factors:
on one hand, we were looking for ways to present the project research and outcome in
a structured and understandable way. On the other hand, we needed a tool to improve
communication between the experts of the different disciplines involved in the project.
Especially the interface between cryptographic researchers and software architects turned
out to be very challenging and before the release of the architecture it was not clear how
the security properties developed at the cryptographic layer and based on strong notions
can be transferred to the cloud applications. Furthermore, the latter seems to be extremely
challenging for the domain of cloud computing. Cloud computing is a new paradigm for
the delivery of IT resources and mainly builds on the outsourcing paradigm. It’s also an
extremely agile environment introducing enormous new challenges for cryptography. If a
service needs to be well supported by cryptography it typically requires various different
primitives to be applied in order to fully provide the required properties. Furthermore,
they are typically only added in an ad-hoc fashion without access to the required cryp-
tographic expertise. Even worse, the existing primitives proposed by research often only
partially provide what is needed or are not compatible with used data formats, encoding
or the like. In those cases the cryptographic support is often not added at all but replaced
by additional technical or organizational means at higher layers. It is clear, that this
alternative solutions can never have the same strength as the pure cryptographic support

13 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

and often introduce additional overhead and complexity which further worsens the quality
of the overall product.

Historically, we did not face this problem on a broad scale. Cryptography was mainly
used to solve well understood problems in a reliable way and without support for flexible
scenarios. Most prominently it was used to establish secure channels in the Internet, to
protect the communication from point-to-point in general, to prove the authenticity of
software or documents, or protect passwords and other data when stored. All this tasks
have well defined security requirements which are not supposed to change over time or per
application. The same is true for the underlying trust models. However, from the past we
learned that even such standard designs could miserably fail if they had been done in an ad-
hoc fashion. In fact, we know of many examples where ad-hoc integration of cryptography
failed and thus its benefits vanished. Even worse, the analysis of first approaches towards
secure channels showed that combining secure cryptographic primitives in the wrong way
can lead to vulnerable protocols which even undermine the security properties of the
underlying primitives. The most prominent example for a protocol which experienced
such a problem is the secure socket layer (SSL) protocol. It is intended to establish a
secure communication channel between two peers over an untrusted transmission system.
The wrong combination of encryption (ENC) modes and message authentication codes
(MAC) led to padding oracle attacks [Kra01] which allowed to break the otherwise secure
encryption scheme. This design problem was caused by a lack of understanding of methods
to combine primitives to schemes in a secure way. In the last 15 years a large body of
research emerged around this topic—and provable security in general—and today we have
access to methodologies which greatly assist this design phase.

Today we face a similar situation within cloud computing. We know how to apply secure
channels to protect communication between clients and service providers, but even without
the impact of cloud infrastructures we have only little knowledge about how to realize
secure services that protect data over their whole lifecycle.

In addition, existing requirements do not map perfectly upon the new cloud environment.
A simple example for this problem is cloud storage. Modern cloud storage does not resem-
ble traditional disk storage anymore as it should also support collaboration in dynamic
user groups. This complicates application of technologies from point-to-point commu-
nication system as this communication pattern cannot be easily supported by existing
cryptographic tools.

A second problem when building secure services is related to their software implementa-
tion. Even if all algorithms and protocols were chosen correctly, their software implemen-
tation requires considerable expertise not generally available to application developers.
The implementation should resist attacks exploiting available side channels and also built
with security in mind.

In summary, we aim to integrate sound cryptographic design, side channel resistance, effi-
cient implementation techniques as well as secure software development into an integrated
secure services development lifecycle. We want to create building blocks for future projects
as well as document how to integrate those building blocks in a secure manner. Further-

14 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

more, we must avoid problems known from ad-hoc design of cryptographic systems but
introduce a holistic methodology that fosters reuse of work.

The goals of the architecture are:

• incorporate cryptographically sound design methodologies
• support adoption by efficient and secure implementations of generic building blocks
• give guidance for use of cryptography in a developer friendly way
• reduce configuration and integration errors as far as possible without limiting the

flexibility
• foster exploitation of results outside their pilot domains
• enable fast adoption of project results

In the following we are presenting the architecture developed in Prismacloud which is
both a conceptual approach to structure functionality as well as a methodology for secure
service design and composition.

2.2 Architecture Layers

The Prismacloud architecture is shown in Figure 1 and comprises four different layers,
three of which are of major interest for this document, namely: primitives, tools and
services. Subsequently, we introduce them and discuss the ideas behind them.

2.2.1 Primitives Layers

The lowest layer consists of cryptographic primitives and protocols which represent basic
cryptographic building blocks, e.g., signature schemes or cryptographic protocols. They
typically provide very specific functionality and are limited in use. Furthermore, the anal-
ysis and development of cryptographic primitives is done by cryptographers with strong
mathematical background, ideally in a provable manner, i.e., by rigorous mathematical
methods and models. The very specialized knowledge required for this work is not shared
by software developers.

In this layer we conduct cryptographic research and will advance its state-of-the-art. As
shown in Figure 1 and summarized in Table 1, in Prismacloud we particularly focus on
11 primitives which are essential for building our services but require additional research
to provide the required functionality and efficiency for application usage. Thus, the re-
search directions followed on the primitives and protocols layer is ultimately driven by the
requirements derived from the use cases and their services. The analysis of the state of
the art in the first project phase revealed gaps which have to be filled during the project.

Major outcome producted within this layer will be new cryptographic primitives and pro-
tocols, specifically addressing features required in the project. The results of cryptographic
research is continuously published for open access and presented on scientific venues as
recorded in WP9 and documented in internal reports of WP4 and WP5.

15 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Primitives

Tools

Services

Applications

SSS

ABCRDC PIR

MSS

FSS

GSS ZKP

GRS XPE

kAN

Se
cu
re

O
bj
ec
t

St
or
ag

e

F
le
xi
bl
e

A
ut
he
nt
ic
at
io
n
w
it
h

Se
le
ct
iv
e
D
is
cl
os
ur
e

V
er
ifi
ab

le
D
at
a

P
ro
ce
ss
in
g

T
op

ol
og

y
C
er
ti
fic
at
io
n

D
at
a
P
ri
va
cy

Data
Sharing

Secure
Archiving

Selective
Authentic
Exchange

Privacy
Enhancing

IDM Verifiable
Statistics

Infrast.
Auditing Encryption

Proxy

Anonymi-
zation

Smart City eGovernment eHealth

Figure 1: The Prismacloud Architecture

16 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Table 1: Portfolio of Prismacloud primitives and protocols.

ID Name Abbrev.

PC.Primitive.1 Secret Sharing Schemes SSS
PC.Primitive.2 Remote Data Checking RDC
PC.Primitive.3 Private Information Retrieval PIR
PC.Primitive.4 Malleable Signature Schemes MSS
PC.Primitive.5 Functional Signature Schemes FSS
PC.Primitive.6 Attribute-Based Credentials ABC
PC.Primitive.7 Group Signature Schemes GSS
PC.Primitive.8 Zero-Knowledge Proofs ZKP
PC.Primitive.9 Graph Signature Schemes GRS
PC.Primitive.10 Format- and Order-Preserving Encryption XPE
PC.Primitive.11 k-Anonymity KAN

Table 2: Portfolio of Prismacloud tools.

ID Name Abbrev.

PC.Tool.1 Secure Object Storage SECSTOR
PC.Tool.2 Flexible Authentication with Selective Disclosure FLEXAUTH
PC.Tool.3 Verifiable Data Processing VERIDAP
PC.Tool.4 Topology Certification Tool TOPOCERT
PC.Tool.5 Data Privacy Tool DATAPRIV

2.2.2 Tools Layer

The second layer is denoted as tools. In the context of the Prismacloud architecture,
tools are a concept used to better communicate techniques to software developers and
architects in an more accessible way. They provide higher level functionality as a combina-
tion of primitives. However, the design of tools is still based on rigorous cryptographically
sound models and ideally still provides provable security for realistic adversary models. A
tool can therefore be regarded as an abstract concept or piece of software, e.g., a library,
which is composed of various primitives which can be parametrized in various different
ways.

As shown in Table 2 in Prismacloud we are developing 5 such tools targeted at specific
application scenarios. The outcome on this level will be twofold: on the one hand, we
define and specify parametrisable Prismacloud tools which can be used to build or
augment services with cryptographic features. On the other hand, the tools and their
most important features are going to be implemented during the project. They will be
available in form of software libraries which will be used to build the services in the pilots.

The Prismacloud tools will be the foundation for mid-term exploitation of Prismacloud
results and should foster their fast adoption. Each of them will be provided with a full set

17 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

of documentation targeted at cloud service architects and implementers, as well as soft-
ware libraries of generic cryptographic components to speed up the service development
process.

The following information will be provided in the respective tool design documents:

• Description of the abstract cryptographic tool by the following approach:
– Specifying the tool and the underlying functionalities and protocols. The tools

specify how the cryptographic building blocks have to be combined in a secure
way and documents the underlying primitive and protocols in a form accessible
to implementers and service architects.

– Additionally, a feature matrix is presented to describe the achievable goals
in a comprehensive way and identify dependencies and contradicting aspects.
The feature matrix shall be mapped against service requirements and therefore
guides the selection of the right configuration of the tool in specific service
scenarios.

– Configuration and usage guidelines will describe how the tool should be used
and how erroneous usage can be avoided.

• A software framework consisting of one or multiple libraries providing core function-
ality.
• Guidance for the operational phase once a tool is deployed in a service or applica-

tion, e.g., information about key management including revocation mechanisms or
deployment recommendations for the distributed object storage tool.

The tools are developed in WP5; the development of the software components is part of
the implementation work package (WP6). A high level overview of the current status of
the tools is provided in Section A. The full specification of all tools will be released around
month M30 of the project and will be available in the following deliverables1

ID Title Due

D5.3 Design and specification of the secure object storage tool M30
D5.4 Design and specification of the data privacy tool M30
D5.7 Design and specification of the topology certification tool M32
D5.9 Design of flexible authentication with selective disclosure tool M28
D5.10 Design and specification of the verifiable data processing tool M32
D6.6 Final release of software implementation of selected components M30

2.2.3 Service Layer

Cloud computing is radically changing the way we are consuming IT resources. It is
also changing the way applications are built. Away from monolithic architectures, we are
facing a shift towards service oriented architectures (SOA) where services can be flexibly
interconnected and deployed in distributed fashion spreading traditional perimeters. In
Prismacloud we follow this trend and develop a portfolio of security enhanced services

1Deliverable names have been changed due to reviewer comments

18 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Table 3: Portfolio of Prismacloud services

ID Name Abbrev. Model Deploy. Tool

PC.Service.1 Secure Archiving SA IaaS private SECSTOR
PC.Service.2 Data Sharing DS SaaS public SECSTOR
PC.Service.3 Selective Authentic Exchange SAE IaaS private FLEXAUTH
PC.Service.4 Privacy Enhancing IDM PIDM PaaS public FLEXAUTH
PC.Service.5 Verifiable Statistics VS PaaS private VERIDAP
PC.Service.6 Infrastructure Auditing IA PaaS public TOPOCERT
PC.Service.7 Encryption Proxy EP SaaS private DATPRIV
PC.Service.8 Anonymization BDA SaaS private DATPRIV

which can be integrated into larger applications in a flexible way. Furthermore, this
services are built atop sound cryptographic concepts, i.e., out of the Prismacloud tools,
and therefore provide strong security guarantees. This approach is different to the broadly
applied ad-hoc integration of cryptographic solutions into applications and helps to avoid
common pitfalls in system design and implementation.

Prismacloud services are built in a layered approach and a service can be seen as a
customization of a particular tool for one specific application—thus we call a service an
instantiation of a tool. In particular, a service is a way to deliver the tool to system and
application developers, the users of the tools, in an preconfigured and accessible form.
They will be able to integrate the services without deeper understanding of tools and
primitives and ideally without even being an IT security expert.

In Prismacloud we have selected a portfolio of 8 services to be specified and developed
in detail. They will be used to demonstrate the benefits of the Prismacloud tools and
show how to use the Prismacloud development methodology. In the following we are
introducing the Prismacloud services which are enumerated in Table 3, a comprehensive
description of them is given in Section 4. Recall that a service can be seen as customization
of one or multiple particular tools for one dedicated application and deployment scenario.
It provides a specific set of features which has been identified as particularly useful for the
class of applications the service is targeted.

The Prismacloud Secure Archiving Service (SA or SAaaS) is a generic infrastructure
service which can easily be integrated into cloud based backup scenarios while providing
a demonstrable higher level of data privacy and availability than current cloud-based
archiving solutions. The service model for this service is IaaS.

The Prismacloud Data Sharing Service (DS or DSaaS) allows multiple parties to se-
curely store data in a cloud-of-clouds network such that no single storage node learns
plaintext data, while still enabling the owner to share the data with other users of the
system, i.e., the data sharing service supports secure collaboration without the need to
trust one single storage provider. The service is based on web technologies and enables
ubiquitous easy access via web browser, i.e., it can be categorized as SaaS model.

19 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

The Selective Authentic Exchange Service (SEA or SEAaaS) enables users to move their
authentic documents to a cloud service and then delegate the selective sharing of parts
of these documents to another party, while maintaining the authenticity of the selected
parts. The other party can then verify the authenticity of the received data. The service
model of this service is PaaS and for different parts of this service, e.g. redact or verify,
it is intended to be deployed in a public cloud model. For the signature generation the
use of private signature generation keys is needed, thus this demands higher security, but
following the ”remote signature” model from the eIDAS regulation this might be deployed
as a service in the public cloud as well. If the data within the document (before being
selectively removed) requires heightened confidentiality protection, the cloud must offer
this, otherwise at least the services for sign and redact (which handle the data before some
parts are removed) should be deployed privately.

The Privacy Enhancing ID Management Service (PIDM of PIDMaaS) offers the capability
of a privacy enhanced identity management. In particular, it allows users to store their
attribute credentials obtained from some entity (e.g, a service provider or an authority)
in this component and to realize a selective attribute disclosure functionality. The service
model of this service is PaaS and the service is intended to be deployed in a public cloud.

The Verifiable Statistics Service (VS or VSaaS) provides the functionality to delegate the
computation of verifiable statistics on authenticated data in a secure way. The compu-
tations have the feature of being public verifiability, i.e., any verifier can check whether
an outsourced computation has been performed correctly, or not. The service model for
this service is PaaS and the service should be deployed privately if data confidentiality is
required.

The Infrastructure Auditing Service (IA or IAaaS) offers the capability to certify and prove
properties of the topology of a cloud infrastructure without disclosing sensitive information
about the actual infrastructure’s blueprint. The service model associated to this service
is IaaS and the service can be deployed in a public cloud.

The Encryption Proxy Service (EP or EPaaS) supports moving legacy applications to
the cloud by encrypting sensitive information identified within HTTP traffic in a format
and/or order preserving way. The delivery model associated to this service is SaaS and
the gateway is intended for private cloud deployment but it is an enabler for hybrid cloud
applications.

The Anonymization Service (BDA or BDAaaS) enables users to anonymize large data sets,
and in particular database tables, i.e. its’ acronym is derived from big data anonymization.
The service allows users to identify private and sensitive information in the data sets and
produce an anonymized version of the data set. The delivery model associated to this
service is SaaS and the gateway is intended to be deployed in a private cloud but it is an
enabler for hybrid cloud applications.

Please note, that we assigned them service and deployment models, although they could
not always be unambiguously identified. We roughly categorized them to give the reader
a first intuition. The assignment of the service model is also illustrated in Figure 2.

20 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

IaaS

PaaS

SaaS

Secure
Archiving

Selective
Authentic
Exchange

Privacy
Enhancing

IDM
Verifiable
Statistics

Infrastucture
Auditing

Data
Sharing

Encryption
Proxy

Anonymi-
zation

Figure 2: The Prismacloud services in the reference architecture.

The Prismacloud services are among the most important outcome of the project in terms
of exploitation and will enable partners to commercialize them in a short timeframe after
the project. The services will be well defined and specified throughout WP7 and imple-
mented in WP6 and WP8. In addition to being specified, the services will also be tested
and evaluated during piloting of the use cases in WP8. In Section 4 we fully document
the Prismacloud services and provide all relevant information for fast adoption. To-
gether with the software and API documentation in D7.7 and the usage guidelines and
SLA recommendations in D7.3 all information for rapid service deployment within new
infrastructure is given.

Regarding exploitation and thus the respective target audience, the Prismacloud services
are intended to be used by cloud service providers as is. Nevertheless, if a new use
case requires a modified version, all documentation is provided to develop a variant with
minimal effort to enable a short time to market. This is achieved as developers don’t have
to start from scratch but can start from the well established Prismacloud services and
tools and thus are able to reuse available knowledge and software.

2.2.4 Application Layer

The application layer contains the applications targeted at real end users. Modern cloud
based applications try to leverage the cloud as good as possible and support their scalability
and elasticity through modularization and the use of service oriented principles. For this
reason we introduced the concept of Prismacloud services being a modern way to expose
security functionality to cloud architects and application developers.

21 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

In Prismacloud we are developing 4 applications to demonstrate the capabilities of
the Prismacloud services and their security benefits. They emerge from the use cases
designed in the project and cover various domains where sensitive data is handled. Ad-
ditionally, to show how the competitive finacial advantage gained through the usage of
Prismacloud services, we developed a business model for each service in D3.4. All ap-
plications will be showcased in the pilot:

Privacy Enhanced SIMON : The SIMON system is the result of an EU FP7 project led by
partner ETRA and implements an electronic disable batch for parking. In Prismacloud
we are extending the existing prototype with the Encryption Proxy Service (EPaaS) to en-
able the operator to outsource the main database to a public cloud in a privacy preserving
manner, i.e., without revealing personal information about users. In addition, the SIMON
system will also be coupled with the Privacy Enhancing Identity Management Service
(PIDMaaS) to reduce the amount of personal data collected in the central database and
therefore protect the users by adoption of advanced data minimization techniques.

Evidence Sharing Platform: This application is intended to realize a privacy preserving
evidence sharing platform on the basis of the Data Sharing Service (DSaaS). The evidences
will manually collected and then stored on a cloud based platform such that no single cloud
provider can infer plaintext of stored personal data or tamper with them.

e-Government IaaS Cloud : The partner LISPA will use two Prismacloud services to im-
prove their cloud offerings in the governmental sector. They are mainly an IaaS provider
and will use the Secure Archiving Service (SAaaS) to add a highly reliable dispersed backup
option for their customers. They will be able to leverage additional cloud offerings—
including public ones—and be able to exploit hybrid cloud storage deployments. Addi-
tionally, with the integration of the Infrastructure Auditing Service (IAaaS) they will be
able to increase users trust in their offerings by being able to prove that users get what
they pay for without revealing information about their internal infrastructure.

Healthcare Data Sharing Platform: In this use case, the healthcare platform of partner
FCSR2 will be augmented and cloudified by the use of Prismacloud services. They
will use the Selective Authentic Data Sharing Service (SEAaaS) service to let patients
manage their medical reports in a privacy friendly way while providing strong authentic
guarantees. The Verifiable Statistics Service (VSaaS) will enable patients under medical
observation equipped with telemedicine to optimize their medication. Finally, the use of
the Anonymization Service (BDAaaS) will showcase how collaboration between researchers
on clinical data can be improved without infringing the privacy of the patients involved.

2.3 Benefits of the Architecture

The main goal of the architecture is to support the development process of cryptographic
applications. The model helps to cope with the complexity and interdisciplinary nature
of cryptographic applications. It is based on the experiences made in the Prismacloud
project, which is a huge undertaking with people from very different disciplines involved,

2which is a result of EU FP7 project TClouds

22 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

P
rim

itives

Tools

Services

A
pplications

SSS

A
B
C

R
D
C

P
IR M

SS

F
SS

G
SS

ZK
P

G
R
S

X
P
E

kA
N

Secure Object
Storage

Flexible
Authentication with
Selective Disclosure

Verifiable Data
Processing

Topology
Certification

Data Privacy

D
ata

Sharing

Secure
A
rchiving

Selective
A
uthentic

E
xchange

P
rivacy

E
nhancing
ID

M
V
erifiable

Statistics

Infrast.
A
ttestation

E
ncryption
P
roxy

A
nonym

i-
zation

Sm
art

C
ity

eG
overnm

ent
eH

ealth
PRISMACLOUD OUTPUT

Scientific
publications,

IP
R

and
P
atents

T
ooldescription,

usage
guidelines

and
recom

m
endations

for
crypto

settings;
Softw

are
fram

ew
orks

Sercice
description,

usage
and

deploym
ent

guidelines;
Interface

specifications
Softw

are
im

plem
entations

N
oveluse

caes,
pilots

and
evaluation

results
B
usiness

cases
and

eploitaiton
plan

Softw
are

prototypes

high Cryptographic knowledge requried low

high Interface complexity low

high Flexibility of software components low

low Application knowledge high

PRISMACLOUD USERS

Scientific community,
Cryptographers

Service developers,
Cloud service providers

Application developers,
Cloud Architects

End users,
European citicens

ServiceExist
FulfillsReq.

Use Existing
Service

ToolExist
ProvidesFeat.

Use Existing
Tool

Derive RequirementsTranslate RequirementsMap
toModel

Prove
Security

Deploy
Tool

Extract
Capabilities

PR
ISM

AC
LO

U
D

M
ethodology

Figure 3: Overview of the Prismacloud CryptSDLC Methodology.

23 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

all targeted at a single goal: the development of cloud services which are secure by design
and leverage feasible cryptography.

Today’s applications in emerging ICT domains like cloud computing or the Internet of
Things (IoT) introduce many new challenges to cryptography. Cryptographic design in
this domain is not an arms race but requires the design of primitives with improved or new
functionality. In Prismacloud we are tailoring and optimizing primitives to fulfill prop-
erties needed by upper layers. We believe that adding missing functionality at the lowest
possible layer will positively impact the security of the application. If the functionality is
not addressed at the lower layer but addressed by alternative security controls on higher
layers it introduces additional overhead in complexity and administration which can also
lower the security of the system.

To combine the primitives in the right way and also configure them accordingly, the
tools layer was introduced. A tool is an abstract concept which resembles a typical basic
application as good as possible. However, tools are still designed in a formal way to
guarantee the security properties but are still independent from implementation. A tool
has a feature set and comes with according usage and configuration guidelines. During
service development the features will be mapped against the requirements and therefore
define an instantiation of the tool for the specific service. Typically, not all features can
be used everywhere because they often imply additional computation or network load and
they can also be contradictory, e.g., in the secure object storage tool proactive security is
not possible with computational security modes (which would offer better computational
and storage efficiency).

Beside being a concept and guideline, a tool is also accompanied with a software implemen-
tation of the core cryptographic functionality. These are libraries which are implemented
by experts in cryptographic software design. Even if the formal concept is provable secure,
software implementation of cryptographic protocols are error prone and hard to get right.
They have to be correct as good as possible but also side channel resistant; the latter is
an art in its own. Having a sound formal cryptographic design of basic functionality and
good software implementations is a major step towards secure applications.

Building cryptographic services out of these tools is much easier than without this in-
termediate step. Tools encapsulate the inner workings of the cryptographic functionality
and offer a defined software interface, e.g., the interface for malleable signature generation
needs some additional information but the software calls can resemble those for classical
signatures. Service design can thus be done by software developers needing only a limited
level of knowledge in cryptography. Having the tools layer, a service can be built in less
time by less specialized software developers. In a sense, the service is a way to deliver the
tool to the cloud customers in a preconfigured way and in a specific deployment. In the
design of the service, the components of the tool have to be mapped on the stakeholders
roles. When implementing the service in software, the libraries can be configured ade-
quately and included into the service logic. There are many potential services that can
be build out of a tool depending on the targeted customers and business domains. To
demonstrate this concept we developed two different service concepts based on the very
same secure object storage tool underneath. The secure archiving service as well as the

24 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

data sharing service follow a completely different deployment philosophy and use compli-
mentary features. However, they are both built from the same underlying secure object
storage tool. This is only one example that demonstrates the flexibility of the developed
architecture, it is also done for the tools Flexible Authentication with Selective Disclosure
(FLEXAUTH) and Data Privacy (DATAPRIV) as shown in Figure 1. Separating tools
and services in Prismacloud guarantees the best possible reuse of work and allows formal
modelling to the highest level possible with reasonable effort.

The application layer is covering the integration of services in applications with real end
users. The application developer itself is typically the cloud customer when viewed from
the services perspective. Here the Prismacloud model seamlessly integrates with the tra-
ditional development model. Prismacloud services should be easily used and integrated
by cloud architects and their security benefits should be accessible in a understandable
language, ideally also supported by strengthened service level agreements (SLAs).

2.4 A New Development Methodology

To fully leverage the benefits of the Prismacloud architecture we also designed a tailored
secure software development lifecycle. The methodology is called Cryptographic Software
Development Lifecycle (CryptSDLC) and defines a way to traverse the layers in the ar-
chitecture. Furthermore, it standardizes the special steps necessary when going from one
layer to the other and aligns them to the general phases of classical SDL models.

The major steps of CryptSDLC have already been included in Figure 3 and are marked by
the big white arrows in the middle. The major steps are Derive, Translate and Map from
top to bottom and Prove, Deploy and Extract from bottom to top. The CryptoSDLC is
based on conventional software development lifecycles, like Microsoft SDL, but introduces
another dimension. It augments and details the requirements, design and development
phases with additional steps specifically dealing with cryptographic design tasks.

In the requirements phase we define the following steps, which implement a top-down
approach for cryptographic requirements gathering:

• Derive Requirements: Based on the requirements gathered we derive the most
important ones for the core cryptographic service we want to use or build.
• Translate Requirements: The requirements are translated into a more formal

language which can be understood and used by cryptographers to start their research
and design.
• Map to Model: To trigger research on primitives and protocols the identified gaps

on the tools layer have to be mapped to research goals in cryptography for specific
primitives or protocols.

In the design and development phases we use a bottom-up approach and define following
steps to go up in the Prismacloud model:

• Prove Security: Tool should be built by formal methods used in cryptography as
good as possible. The goal is to support features by the definition of provably secure

25 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

protocols.
• Deploy Tool: The components of a tool are arranged in the service architecture in

a way such that by reasoning it gets clear how the features of the tool translate the
security requirements fulfilled by the service.
• Extract Capabilities: Based on the features of the tool and the deployment model

specific service properties called capabilities can be extracted. They are exposed as
an additional property to the upper application layer.

Although we define this holistic approach going down to the lowest layer, the reuse of
existing work is a major goal of the whole process. In all layers the step down to lower
layers is only performed if the requirements cannot be already achieved with available
solutions.

Reuse is particularly forced by following policy:

• Application layer: Only develop a dedicated service if the application requirements
cannot be fulfilled otherwise.
• Service layer: If possible, develop the new service on the basis of existing templates

by only adding missing features supported by the underlying tool. Only develop on
the lower tool layer, if needed features are not already provided by tools.
• Tool layer: Only develop a new tool if given tools cannot provide the required

features or an existing cannot be extended with the required feature. For new
designs, always do a state of the art analysis if missing features can be provided by
existing research results or specify the gap if not. Then trigger research activities
on the primitive layer.

CryptSDL has been implemented and successfully tested within Prismacloud up to the
service level; details can be found in the subsequent sections of this document.

2.5 Design Patterns for Inter Domain Communication

Prismacloud as a project for the development, design, implementation, and feasibility
demonstration of novel secure and privacy aware cloud services employs scientists and
specialists of many domains in all its layers of architectural abstraction. The following
bullets list for each layer, which group of individuals needs expertise on that particular
layer–plus at least in the adjoining layer above and below (if there is a layer above or below)
during the development process. For example, a tool designer with main expertise in the
Tools Layer needs knowledge of the capabilities of the cryptographic primitives developed
and configured in the primitives layer, as well as of the requirements postulated by the
experts of the Services Layer.

Which group of individuals needs expertise in a particular layer:

• Primitives Layer:
– cryptographers

• Tools Layer:
– tool designers (specialised software engineers)

26 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

• Services Layer:
– service designers
– usability and HCI experts
– cloud service providers and sub-providers (GDPR: ’ controllers’ and ’proces-

sors’3)
• Applications Layer:

– business model developers
– general domain experts

• On several or all layers:
– project communicators
– IT security specialists

Also during end user application and service provisioning, which is the scope of the follow-
ing bullets, cloud providers (or in terms of the GDPR cloud controllers or processors) need
not only have expertise in the services layer, but also in the Tools and the adjoining Appli-
cations Layer. But note, that during provisioning and (end-)use no expertise is required
on the primitives layer. This is due to a deliberate design choice of the Prismacloud
architecture–the encapsulation of cryptographic functionality in the tools, thus hiding the
cryptographic details, and all the caveats, implications, and sources of error from service
developers.

During end user application and service provisioning:

• Primitives Layer:
– n/a

• Tools Layer:
– n/a

• Services Layer:
– cloud sub-providers (GDPR: ’processors4’)
– cloud providers (GDPR: ’controllers’) 5

• Applications Layer:
– individual or organisation (GDPR: data subject)
– individual or organisational cloud customer
– GDPR: recipient (to whom data is disclosed)
– GDPR: third parties (others, authorised to process data)6

• On several or all layers:
– cloud auditor

3This is not exactly an 1:1 relation as cloud providers are entities that ”determine the purposes and
means of the processing of personal data” ([Eur16], Art. 4, Par. 7 and may be the processors themselves.
Processors are defined in the GDPR as entities ”which processes personal data on behalf of the controller”
(ibid. Par 8)

4ibid.
5In its conceptual framework [a4c14], the FP7 A4Cloud project provides additional two sub-categories

in the cloud provision chain, being mainly active in a trading commerce: cloud carriers and cloud brokers.
6For all the GDPR definitions, see [Eur16] Article 4

27 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

– GDPR: ’supervisory authorities’

Prismacloud develops specific communication tools to support the layered development
process governed by the Cryptographic Software Development Lifecycle (CryptSDLC),
as well as to support the diffusion of Prismacloud paradigms and capabilities among
prospective providers and end users. These tools are cloud security and privacy patterns
and HCI–human computer interaction–patterns.

Both cloud security and privacy patterns and HCI patterns are a kind of design patterns,
which are used to codify expert knowledge and requirements within a specific scope in a
way that the information remains accessible across domains of involved actors. The main
idea is that a design pattern shall “describe(s) a problem which occurs over and over again
(...) and then describes the core of the solution to that problem, in such a way that you
can use this solution a million times over (. . .)” [AIS77]. This is done by describing the
(empirical) background of the pattern, i.e. the “problem”, and giving instructions for the
“solution” in natural language in a framework of categories.

The concept was invented in Berkeley, CA., in the 1970s for application in architectural
design (architecture for towns, buildings, construction [AIS77]7), and has later on been
modified for application in several information technology sub domains. The first appli-
cation of design patterns in information technologies was in software architecture in the
1990s when object oriented design and re-usability required efficient communication of
complex issues across different domains of involved people [GHJV94]. Later on, the con-
cept was used for the specification of security and privacy concerns in security and privacy
patterns [SFBH+06, DG13], as well as for human computer interaction aspects in HCI
patterns [FHKP+11]. Since several years, there exist collections and catalogues of cloud
security and privacy patterns specifically for modelling threats and solutions in the cloud
context.

In Prismacloud we initially proposed a set of nine cloud security and privacy patterns in
D2.2 “Domain Independent Generic Security Models” of M12 (End of Jan, 2016). These
patterns covered approximately the cases we initially at project begin had devised for
the cryptographic functionalities we wanted to cover in Prismacloud. We used these
original patterns as common reference and “communication means” between tools devel-
opers, service developers, and application developers in the actual process of developing
the PRISMACLOUD architecture and the CryptSDLC method.

In D3.6 “Secure Cloud Usage for End Users, Progress Report” (delivered in M24), we
developed a new method for codifying properties of our tools and services in cloud security
and privacy patterns (new is the dedicated application of patterns for the documentation
of specific tools and services, contrary to a more generic, implementation independent
approach, usually prevalent in design patterns). Now that the tools and the services
are “feature frozen” and specified in detail (with the current M30, end of July, 2017,
deliverables round) the cloud security patterns are being iteratively further developed.
This is done in task 3.4 “Secure cloud usage for end-users” of the end user and business

7The editor yet again has to point out to the interested reader that the entire, most interesting book is
available for free download at https://archive.org/details/APatternLanguage

28 of 145

https://archive.org/details/APatternLanguage

D7.6 Guidelines and Architecture for Secure Service Composition

deployment work package WP3 where we will be using these patterns in order to derive
structured guidance for prospective end users of the proposed cloud services. We intend
to deliver and publish a full set of patterns by project end in D3.7 ”Secure Cloud Usage
for End Users” (M42, End of July, 2018).

In D3.2 ”HCI Guidelines” we are present three HCI patterns8 and intend to present a full
set for design contentions in the Prismacloud prototypes by the end of the project.

8HCI.P1 Digital Signature Visualisation, HCI.P2 Informed Consent, and HCI.P3 Stencil for Digital
Document Redaction

29 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Development

Application
Layer

Service
Layer

Tool
Layer Tool Description

Application
Security for

Services

Tool-SW
Framework

Pilot
Development

Service
Deployment and

Assurance

Tool
Deployment
Guidelines

Pilot
Evaluation

OperationDesign

P
R

IS
M

A
C

L
O

U
D

 A
rc

h
it

ec
tu

re

Figure 4: Secure service development artifacts.

3 Guidelines for Composing Secure Services

In this section we are detailing the development process envisaged to implement the
methodology presented in the previous section. We are describing the various approaches
taken on the different layers of the architecture and how they interface with each other.
For that purpose we define a concrete set of documentation artifacts which is also used in
the project to document the development of the Prismacloud services.

3.1 Overview

Based on the architecture and the development methodology presented in Section 2, this
chapter proposes recommendations for the development process. It serves as a guideline
for the implementation of the proposed CryptSDLC methodology and defines necessary
documentation artifacts to be generated during service development. For Prismacloud
in particular, the guidelines also serve as a project standard which must be used by all
partner involved in service and application development.

This guideline covers multiple disciplines and intends to be compatible with relevant stan-
dards within their respective fields. Furthermore, it tries to establish a link between the
different fields as well as interfaces. We are using accepted standards in cryptographic
design on the primitives and tools layers, and security-by-design concepts on the service
and application layers.

Besides considering CryptSDLC, the guidelines are following well known approaches from

30 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Policy

Standards
(mandatory controls)

Guidelines
(recommendations / best practices)

Procedures
(step by step instructions)

Figure 5: IT security document hierarchy.

software development life cycle management and security by design methodologies. Also
recently established concepts like the CloudSDL and assurance framework developed in
SECCRIT are also integrated. Finally, we adopted holistic approaches which not only
considering the development phase but also includes operational aspects relevant for the
production phase. The coverage of the guidelines is shown in Figure 4. The Circle mark
the artifacts delivered in the project and the location on the x-axis mark the relevance for
the corresponding stage in the lifecycle. Furthermore, the y-axis represents the layer the
documents belong to as well as the coloring is aligned with the layer in the Prismacloud
architecture.

The final version of this report will contain full service documentation based on the guide-
lines presented. However, the relevant documentation for the tool layer will be covered
within the WP5 deliverables. The current version of the guidelines defines the following
key properties to be covered in the service’s documentation:

• Description of the service
• An operational view and service model
• Description of benefits and design requirements
• Definition of the attack surface and completion of a risk assessment
• Definition of security controls to be implemented
• Description of operational considerations
• Definition of a monitoring and assurance profile

All steps together cover the complete life-cycle for service development and further inte-
grate state of the art methodologies for application security and operational security. In
the following we review the adopted methodologies and give recommendations how they
should be applied in the service development process.

Within this document we are using definitions derived from common usage within IT
security frameworks, in this case from the ISO27000 security standard for information

31 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

security management (ISMS). See Figure 5 for an overview of the commonly used elements
in ISO27000:

• Policies are the top tier of formalized security documents. These high-level docu-
ments offer a general statement about the organization’s assets and what level of
protection they mandate. In Prismacloud we are not dealing with this level.
• Standards are much more specific than policies and are tactical documents as they

lay out specific steps or processes required to meet a certain requirement. In Pris-
macloud we are setting a project-wide development standard which points to key
procedures in our methodology documented in the service section of this document.
• A guideline is a recommendation or suggestion of how things should be done and

point to certain statements in policies or procedures. It is meant to be flexible to
allow for customization for individual situations. In this section we are defining the
Prismacloud guideline for secure service development, we recommend techniques
for different levels of the architecture and show how they fit together and build the
Prismacloud development methodology.
• A procedure is the most specific of security documents. A procedure is a detailed,

in-depth, step-by-step build specification. We develop some specific procedures to
be applied in the development of the services. Especially the unified documenta-
tion of services and tools is based on procedures defined to be used by all partners
throughout the project.

3.2 Requirements Engineering

The requirements engineering phase starts with the beginning of the project at the highest
abstraction level which is the application level in our case. In Prismacloud we analyzed
applications and compiled a catalog of requirements associated with them as documented
in D2.3.

From the requirements and the functionality described in use cases we extracted service
functionalities which ideally resemble the generic idea behind the application and encapsu-
late the core functionality in a domain independent way. New requirements for the service
have been derived from the application requirements specifically as a subset of the overall
set.

The requirements which are relevant for the underlying cryptography have been extracted
and translated into a more formal language which is used to model the environment in
cryptography. Typical examples are the specification of the security properties, adver-
sary models (e.g., computational or unbounded), network models (e.g., synchronous or
asynchronous).

During the cryptographic design the models are further mapped to individual models for
the different primitives and protocols used. Furthermore, it will be checked if solutions for
the aspired functionality exists or if primitives have to be adapted to support the full set
of functionality modeled at the tool layer. The overall process is part of the methodology
shown in Figure 3.

32 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Requirements engineering within Prismacloud. From our current experiences we
recommend to adopt a process conducting the following steps:

• Decompose the application and derive a generic domain independent service with a
well-defined set of associated requirements.
• Translate the requirements for cryptographic design to one of the more formal lan-

guages known from cryptography
• Map the requirements to specific primitives and protocols used to compose the tool.

3.3 From Primitives to Tools

As discussed in detail in Section 2, on a high level, primitives in Prismacloud realize very
basic cryptographic functionalities, while tools are higher-level concepts, which are solving
problems on an abstract and generic, yet already practically relevant level. Due to the
cryptographic nature of the tools developed in Prismacloud, it is of prime importance
to have a profound analysis and sound security proofs for them. In the following we will
thus discuss the two main approaches being used for composing primitives to tools, and
explain where they might be used within the project.

3.3.1 Universal Composability

Often when analyzing the security of cryptographic protocol one considers the analyzed
protocol as a standalone application, sometimes even assuming that only a single instance
of the protocol is executed at a time. However, this clearly does not properly model
reality, where many instances of potentially different protocols are executed concurrently,
potentially interacting with each other. Unfortunately, security properties proven in the
standalone setting in general are not retained under protocol composition. Overcoming
this problem and constructing security models where security is retained under protocol
composition is the subject of various frameworks found in the literature, e.g., Canetti,
Hirt and Maurer, Pfitzmann et al., and Küsters et al.[Can01, CCK+06, CDPW07, Küs,
KT13, MR11, Mau11, PW00].

Even though being different in their details, all these frameworks follow the same high-level
idea: In a first step, a protocol designer specifies the ideal behavior of the cryptographic
task he wants to realize in terms of an ideal functionality F . This ideal functionality takes
inputs from all involved parties, performs some computations, and returns outputs to all
parties. Apart from this, no communication between the protocol participants takes place,
i.e., F can be thought of as a trusted party realizing the required functionality, which is
secure by definition. A real protocol P now realizes (or: emulates) F if every attack P
could also be mounted on F , which cannot be possible because of the assumed security of
F . Slightly more formal, P emulates F if in any context any attack in the real world (i.e.,
on P) can also be efficiently simulated in the ideal world (i.e., on F).

The main results of all universal composability frameworks now is a very strong compo-
sition theorem. Namely, it says that if P emulates F , then F can be replaced by P in

33 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

arbitrary higher-level protocols without affecting the security of the overall construction.
That is, let F be an ideal (high-level) functionality which is emulated by P, which itself
uses another ideal (low-level) functionality G as a subroutine, e.g., for secure data transfer
or encryption. Let furthermore Q be a protocol which emulates the low-level functionality
G. Then PQ/G emulates F , where PQ/G is the protocol P where every invocation of the
ideal functionality G is replaced by an invocation of its realization Q.

Advantages. Constructing tools in universal composability frameworks yields a number
of favorable properties.

First, we obtain very strong security guarantees as discussed before. In particular, for
certain application areas meaningful security can hardly be proven in other ways. For
instance, this is the case for cryptographic constructions involving human-memorizable
passwords, as users tend to share passwords, use related passwords, or to leak information
about their passwords, and thus such constructions must not be analyzed as standalone
applications.

Furthermore, because of the composition theorem, universal composability frameworks
allow for a modular security analysis of complex primitives and tools. This is because in the
construction and security proofs of higher-level protocols, one can use ideal functionalities
as subroutines, and later simply replace them by secure realizations. Furthermore, because
of this modularity it is straightforward to replace certain parts of a protocol by, e.g., more
efficient constructions.

Also related to this modularity, security proofs become less monolithic and more compact
as well, which (at least in theory) might make it easier to verify the formal soundness of
a proposed construction.

Drawbacks. Besides the obvious advantages, proving constructions secure in a UC
framework unfortunately also introduces a number of drawbacks.

First, UC-security usually comes at a high computational price, rendering many construc-
tions practically unusable, in particular when they are supposed to be executed on low-cost
devices with low computational capacities.

Furthermore, even though universal composability has gained significant attention from
the research community for more than a decade by now, many existing primitives have not
(yet) been formulated in any of the existing frameworks. Therefore, designing UC-secure
tools might require extensive effort also on the primitives level in order to get efficient
building blocks that can be composed in a modular way.

Finally, virtually all of the existing frameworks are either to restrictive in their expres-
siveness to model all functionalities one needs, or they suffer from subtle technical flaws
spoiling the high security guarantees. Even worse, those models that are considered to be
formally sound and which are sufficiently generic to model all relevant functionalities do
not provide sufficient support to protocol designers when defining ideal functionalities and
real protocols. As a result, every protocol designer has to fix certain aspects of the frame-

34 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

work (e.g., the way that corruption of protocol participants works) himself, resulting in
potentially incompatible primitives which cannot be used to jointly construct higher level
tools. This issue is currently addressed by ongoing research of Prismacloud [CEK+16].

Universal Composability within Prismacloud. We believe that certain benefits
coming from UC modeling are often actually not required in practice. For instance, one
usually chooses a fixed instantiation of a primitive and does not replace subcomponents
of tools modularly later on. Because of this, and because of the computational overhead
of UC-security, we will not design and prove all primitives and tools in UC-frameworks.
However, we might use such a modeling for primitives and tools which are either used as
building blocks in multiple higher-level constructions, or where the computational costs
(and overhead) are acceptable in practice.

3.3.2 Direct Construction of High-Level Primitives

The other main approach for constructing complex primitives and tools and proving them
secure are direct (or ad hoc) constructions. That is, one defines a set of experiments
covering the security properties one wants to realize with the given functionality, e.g.,
unforgeability of signatures, confidentiality against a defined class of adversaries for en-
cryption, etc. One then specifies concrete instantiations of algorithms and proves that
those algorithms indeed satisfy those security definitions.

Advantages. The main advantage of ad hoc constructions is an increased efficiency
compared to universally composable constructions. That is, when aiming for practically
efficient schemes that can be deployed in the real world, it is often hard if not impossible
to come up with UC-secure instantiations, while this is indeed possible for ad hoc schemes.

Drawbacks. Direct constructions based on security experiments often suffer from sev-
eral severe drawbacks. One of the most fundamental drawbacks is that security is typically
not retained under concurrent composition of the resulting protocols, often not even when
the protocol is only composed with other instances of the same protocol, let alone other,
potentially insecure, protocols.

A second drawback of UC secure constructions is that they often do not allow for protocols
with very high modularity. That is, in general it is hard to replace certain sub-components
of a tool without having to revise the entire security proof.

Finally, and related to the previous issue, security proofs tend to be monolithic and non-
modular for ad-hoc constructions. This is different to UC-secure constructions, where
lower-level primitives can be used as black-box building blocks by using their corresponding
ideal functionality in the security proof.

35 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Direct Constructions within Prismacloud. Within Prismacloud, we will design
most of our tools and primitives on an ad-hoc basis. This is mainly because Prismacloud
is aiming at developing practically usable schemes, and thus the higher efficiency of di-
rect construction is required. However, we will try to mitigate the drawbacks of direct
constructions wherever possible. For instance, we will at least partially mitigate the prob-
lem of security problems under protocol compositions by modeling, e.g., concurrent self
composition in the definition of the security experiments by allowing the adversary to
initiate arbitrarily interleaved invocations of the designed protocol. Also, we will address
the reduced modularity by aiming for generic constructions wherever possible. That is,
we will try to work with abstract definitions of, e.g., encryption or signature schemes in
order to not nail down the concrete scheme to be used. This will increase the flexibility
of our tools by making them re-usable in different contexts. As a positive side-effect, this
will also make our security proofs a bit less monolithic, as sub-components do not need to
be considered in the security proof but can be used in a similarly idealized fashion as in
the UC approach.

Among others, we have already used this approach for constructing a framework for at-
tribute based credentials (ABCs) [CKL+15], for designing an auditable distributed storage
system as a fundamental part of the secure object storage tool [DKLT16], and for designing
a data sharing platform with selective disclosure for confidential data [DKS16].

3.4 From Tools to Services

The tool abstraction we have introduced in Prismacloud is a key concept which greatly
simplifies the development of secure services. Tools are an abstract description and provide
core functionality as well as additional features which can optionally be added to the
system. Each feature come with sound cryptographic realizations underneath to be used
in the implementation. Furthermore, the tools are designed in mathematical rigorous
models and based on the ideas of provable security as described in the previous section.

When we speak of formal modeling or methods, we mean that we cryptographically model
a scenario or a use-case in terms of well known theoretical tools from the domain of provable
security. In particular, this means that we formally model it either using composability
frameworks (such as the universal composability framework) or using a direct approach
by carefully modeling the capabilities of an adversary. In both approaches, the provided
constructions used by us come with a rigorous security analysis, i.e., a proof of security.
This means that we come up with constructions that provably satisfy our posed security
requirements and thus give us strong confidence in their security guarantees.

The tool layer is part of the Prismacloud development methodology and was intro-
duced to improve the results and speed in secure service development. It is also intended
to maximizes the reuse of existing work on the cryptographic layer. According to the
methodology, the service requirements are matched against the feature set provided by
the tools to achieve the desired goals. In the ideal scenario, no tool development has to be
triggered and service can be built right away from existing tools. However, if the respective
tool does not provide the right features, the Prismacloud methodology suggests trying

36 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

to add it at the lowest layer. This means that the development cycle going down to the
primitives layer is triggered and if possible the feature is added to the tool by the best
formal methods available. Once added, it can be reused for all further service designs and
if the feature cannot be added, additional measures and security controls have to be used
at the higher layers to fulfill the requirements.

Nevertheless, the process of generating a service out of a tool has to cover all additional
steps not covered by the tools but needed for real world applications. In particular, the
following steps are necessary to design a service out of a tool:

1. Specify a service and deployment plan as well as stakeholders

2. Identify major components in the service and sketch their main functionality

3. Embed the tool components within the service components

4. Map the requirements to the features provided by the tool

5. Generate a software architecture and specification

6. Implement software development lifecycles with integrated security

7. Propose operational guidelines like an assurance model to support production phase

Using the proposed methodology should lead to services which are secure by design and
built on cryptographically sound composition of primitives and protocols, i.e., in a provable
way in the best case. Especially, after embedding the components of the tool into the
components of the service—the deployment step—and considering all additional guidelines
specified by the tool, e.g. “communication between server and dealer must be private
and authentic”, we can reason about the service to be a secure instantiation of the tool.
Compared to ad-hoc integration of cryptography into a service, the additional detour over
the tools introduces some additional work for the first time, but later on supports wide
reuse without the need for individual analysis of specific services.

To demonstrate this advantage we show the flexibility of the tool concept in Figure 6,
where we design two different service concepts based on the same secure object storage
tool. The two services—secure archiving and data sharing—are aimed at different use
cases with different trust and business models while being based upon the same tool.
They also use different, sometimes even contradictory, features from the tools.

Naturally, when building a piece of software there are additional aspects to consider apart
from using correct algorithms, i.e., correct cryptography in our case. It faces all chal-
lenges known from secure software development and all state-of-the-art processes and
methodologies for SDL shall also be applied during the Prismacloud service develop-
ment. Tools also offer an additional benefit: increased development speed and improved
security through the secure and efficient software software implementations of core cryp-
tographic functions provided with the tools.

Nevertheless, a complete service is comprised of many dedicated software components
running within the cloud infrastructures. Even worse, operational aspects have to be
considered and defined to fully support a cloud service life cycle thus mandating integration
into operational processes. In summary, although the tool concept greatly facilitates
the service development process, all SDL documentation must be heeded to foster quick

37 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

adoption of project results on the service level.

Service Development within Prismacloud.

In Prismacloud we are developing a portfolio of 8 services out of the 5 tools devel-
oped in the project according to the presented methodology. In particular, the following
documentation is generated for the Prismacloud services:

• Overall idea and functionality of the service including:
– A summary of key features with respect to novel security and privacy properties
– A usage model and stakeholder analysis explaining the major roles involved

• Operational view and service model including:
– Abstract interaction dynamics
– Definition of provider/consumer scope of control

• Major functional requirements are described and mapped against the provided fea-
tures of the tool
• Guidance for application development based on SDL

– Results from the attack surface analysis
– Results form the threat modeling process
– Threat assessment and mitigation analysis
– Validation plan

• Definition of an assurance model and security-monitoring profile

3.5 Design, Development and Deployment

A state-of-the-art software development processes for service development is essential for
achieving secure services. Even if a tool’s functionality is implemented correctly, its se-
curity is undermined if the enveloping software has vulnerabilities. In Prismacloud we
adopted the well established Software Development Lifecycle (SDL) from Microsoft which
is compatible with the emerging ISO27034 series of standards for application security. Fur-
thermore, we adopt parts of the cloud specific development life cycle extension developed
by the SECCRIT project: the hierarchical and iterative security requirements elicitation
process from CloudSDL as well as their assurance monitoring approach during operation.
Finally, we talk about the relation to the security and privacy design methodology also
used in the project and give some general technical deployment recommendations.

3.5.1 CloudSDL from SECCRIT

An overview of the CloudSDL is shown in Figure 7 and we are quickly reviewing the six
stages defined for the secure software development phase of cloud based applications or
services.

1. High level security objectives analysis: This preliminary step consolidates high level
business objectives with security related standards, best practices and guidelines to
set the initial security objectives for secure service design, development and deploy-
ment.

38 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Dealer
(Client)

Server 1
(Provider)

Server 2
(Provider)

Server n
(Provider)

.

.

.

Reader
(Client)

Verifier
(Auditor)

Secure Object
Storage Tool

Client

SAaaS

Dealer
Reader

Verifier

Server

Server

Server

Server

Client

DSaaS

Verifier

Server

Server

Server

Reader

Client

Client 2
Dealer
Reader

Client

Dealer

Reader

Dealer

Figure 6: Illustration of different deployment models for storage tool.

39 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 7: Cloud-service development life-cycle (CloudSDL.)

2. Analysis: During this step the service is analyzed for compatibility with requirement
coming from cloud environments. Furthermore, the initial set of security require-
ments is specified and potential threats to the particular use case are identified.
Ideally, if security requirements for the IT service are predefined, they are taken into
account and, if needed, adjusted to the circumstances occurring in each subsequent
stage.

3. Design: In the design step, the software architecture for the developed IT service
is designed in line with the security requirements specified in the analysis step. If
required, refinements of the security requirements are performed to align the security
requirements towards the particular use case.

4. Implementation: During implementation standard software development methodol-
gies are applied. It is important, that the used methodologies support the security
by design philosophy and therefore make use the developed requirements.

5. Verification: In this step, the software is tested against a predefined set of security
requirements before being deployed or migrated in to the cloud. Additionally, before
the application is deployed in the cloud the readiness of the organization shall be
verified (e.g. special disaster recovery strategies, trainings, or revisions of SLAs
might be required).

6. Deployment: In the final step of the development phase the IT service is deployed
to the cloud environment by taking into account the security requirements related
to platform configuration.

This approach considers security from the very fist step and integrates security require-
ments engineering throughout all phases. Additionally, these requirements can also be used
to support the selection of suitable cloud providers or to extract processes and monitoring
information for the production phase.

CloudSDL within Prismacloud. In Prismacloud we follow the process as good as
possible but without considering the full spectrum of processes, i.e., we omit the steps
dealing with organizational aspects as well as legal and compliance issues. However, we
adopt the iterative and hierarchical security requirements engineering process defined and
provide following information:

40 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

• Application level security analysis including business objectives
• Derivation of service level security requirements
• Provide design level support for security based on cryptography if possible
• Base the implementation and verification on standard Microsoft SDL process
• Support service deployment and usage with additional security capabilities and ad-

vertise them via service description languages

3.5.2 Microsoft SDL

The cost of mitigating software vulnerabilities is directly proportionate with their detec-
tion point of time. The earlier vulnerabilities are recognized and mitigation procedures
initiated the lower the overall impact upon project costs. Neglecting security during early
development stages, such as Requirements Analysis or Design, yields products with sys-
tematic security problems, e.g., security problems based upon badly chosen architecture
decisions.

To prevent costly corrective measures Microsoft’s Security Development Life-cycle focuses
upon early detection of potential security problems.

Prismacloud is a research project consisting of multiple partners. Produced artefacts
include multiple software prototypes fulfilling partner-specific use-cases. This special con-
stellation of multiple partners working together on a final prototype lead to some modifi-
cations of the original SDL:

41 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Phase Practise Not applicable because

Training Core Security Training All personnel is provided by the different
partners and is already educated in secure
programming

Release Create Incident Response Plan Research ends with prototype implemen-
tation, no long-term system management
is included

Certify Release and Archive Our software is delivered “as-a-service”.
While it has to fulfil our internal test-
cases no public software releases are cre-
ated thus no release can be certified.

Response Execute Incident Response Plan Research ends with prototype implemen-
tation, no long-term system management
is included

Other parts of the SDL have already been created by prior deliverables, including the
security requirements needed for finishing the requirements phase. Traditional software
projects perform an initial security and privacy assessment in order to determine the
level of privacy and security actually needed by the software project. Based upon this
selection, fitting quality gates or bug bars—bugs that are classified as “show-stoppers”—
are defined. As we are a security- and privacy-focused research project, all our security
and privacy requirements are deemed to be show-stoppers thus removing the need for
further classification.

The project engineers heed the best practices detailed within the Design, Implementation
and Verification Phases.

During the Design-Phase the gathered security requirements are applied to a planned
service implementation. Not all high-level security requirements might be fitting, thus in
an initial step design requirements for the concrete service are elected. A common problem
with services are overarching interfaces that provide more functionality that is actually
needed. This additional functionality leads to an increased attack surface and increases
the chances for security vulnerabilities and long-term maintenance costs. To prevent
this, all exported interfaces are subject to an Attack Surface Analysis and Reduction.
The generated minimal-interface and design requirements are input for threat modeling
utilizing the STRIDE methodology. The output of this modeling are concrete security
threats for our planed concrete service.

During the Attack Surface analysis all paths for data/commands into or out of the appli-
cation well as all valuable data used within the application (including keys, personal data,
PII, intellectual properties) are documented. This includes protective measures and codes
that are placed upon that path—firewalls, authentication, authorization, etc.

STRIDE aids the threat modeling process by providing an usable categorization of po-
tential threats into the following classes. Spoofing identity allows an attacker illegally
accesses and utilize identity information to gain access to other services. Tampering
with data includes malicious altering of data. Repudiation threats are associated with
users denying performing malicious actions. Information Disclosure includes the board

42 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

field of data leaks. Denial of Service threats describes any means possible for making
an service inaccessible. Elevation of Privilege allows an attacker to execute operations
with higher user/access rights than her authorization originally entailed.

During a typical threat-analysis meeting multiple dozen of threats can be identified and
grouped according to their membership of the different classes.

During the Implementation Phase the tools (akin to algorithms or building blocks) are
combined into services. The SDL focuses upon providing a list of known good develop-
ment practises or tools (not to be confused with tools in the sense of algorithm) as well
as on static verification of the written source code. All project partners are allowed their
own tool selection. At AIT we have selected the Java Programming language and the
pre-selection contains Language Feature Level (Java 8.0) as well as used libraries (appli-
cation servers as well as client libraries). This limitation was deemed necessary as “using
components with known vulnerabilities” was recently added to the OWASP Top 10 Vul-
nerabilities. In addition, some programming language functionalities have been deemed
as inherently insecure and not allowed for development: this includes native method in-
vocation (as it circumvents Java’s memory-safety guarantees) and direct database-access
without using an database mapper. Again, this selection was used to prevent common
security vulnerabilities – Injection Attacks (prevented by the Database Mapper) are cur-
rently Number 1 at the OWASP Top 10. All written source code is subject to static doe
analysis. For this, the “findbugs” program has been integrated into the project’s build
chain and is automatically performed during every build.

After the implementation phase comes verification. No source code is ever released into
the prototype testbed without prior verification. In contrast to the code validation all code
is tested against running systems. All network code is subject to network vulnerability
scanners (AIT is using a combination of nmap, openvas, sqlmap and arachni). No security
finding of level “Medium” or higher shall be allowed. In addition Fuzz testing is performed
against all network interfaces. As external tests are inherently black-box based the result
of the tests is not only a list of potential vulnerabilities but also an external view of
exported interfaces. This external view describes the actual attack surface of a service
and is thus compared to the initial attack surface analysis of the design phase. The tested
attack surface must be the same or smaller than the designed attack surface.

One best-practice normally performed during the release-phase is still performed during
our secure software development life cycle: a final security review is performed after all
sub-components and services have been deployed within our prototype testbed. Together
with functional tests this is the final verification outcome of the Prismacloud research
project.

SDL within Prismacloud. In Prismacloud we apply SDL and provide full documen-
tation of following steps:

• Attack Surface Analyis
• Threat modeling with STRIDE
• Risk assessment
• Risk mitigation plan

43 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

3.5.3 SECCRIT Assurance Monitoring

SECCRIT proposes a two-phase secure cloud service life-cycle that integrates requirements
engineering and iterative refinement with respect to security, through each stage of both
phases. The first phase is called Development phase and covers the sequential set of steps
where a service is being designed and developed. Secondly, the Production phase is where
a deployed service is validated against those security requirements that have been defined
in development phase. As mentioned before, consistent integration of security concerns
throughout each step of both phases is vital for designing and operating secure systems
and services. Therefore, in each phase of SECCRIT’s proposed life-cycle the security
requirements engineering process is aligned to the particular step (design, development,
maintenance, assessment or monitoring), standards, best practices, or guidelines [fSC05,
NA12].

We already discussed the CloudSDL approach for the service development phase in Sec-
tion 3.5.1. In the following we will discuss assurance monitoring which is used in the
production phase. An overview of the approach developed in SECCRIT is shown in Fig-
ure 8.

Figure 8: Production phase of secure cloud-service development life-cycle

To perform consistent security assessment the framework [HTL+14] requires a predefined
set of security properties, used to validate security across individual components of interest.
These security properties need to be concisely defined as the validation is based upon their
condition. Therefore, we use the security requirements from the development phase to

44 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

engineer the security properties for our validation process.

To acquire security related information across the infrastructure we use Collectors that
harvest information, deliver it to assurance framework to compute the assurance level and
classified across three assurance classes (confidentiality, integrity, availability). Addition-
ally, both security requirements and properties are used to define policies for maintaining
or assessing security.

CloudSDL and Assurance Monitoring within Prismacloud. In Prismacloud we
try to apply the assurance monitoring approach from SECCRIT where appropriate. In
particular, we analyze the secure archiving service in more detail to explain the method-
ology. However, because a full analysis of all service is out of scope, for the remainder of
the services we give general operational guidance where needed. Furthermore, we will give
additional guidance on operational aspects of the services in WP8, where we will report
lessons learned from pilot evaluation and verification.

3.5.4 Secure deployment

Nowadays, applications and services entail vast amount of dependencies (e.g., libraries,
packages, runtime environments) that have to be in place for both deployment and pro-
duction environments. This is currently the main obstacle when it comes to portability. To
enforce a higher degree of portability and interoperability we need a solution that will offer
lightweight distribution of packaged applications. Currently, this portability is achieved
through virtual machines that combine the applications or services together with their
dependencies. Unfortunately, virtual machines introduce a high performance, complexity
and performance overhead. A possible solution to this are containers that run on the top
of the host operating system. Containers are virtualization technology, deployed on top of
a shared operating system environment, used to isolate processes by controlling available
resources and namespaces on which a service or a process is being provisioned. Basically,
containers offer the ability to create customized isolated environments that are completely
independent in terms of namespace from the host OS. Therefore, containers are quite sim-
ilar to the standard visualization concepts being used nowadays such as virtual machines
(VM). Although, containers and VMs are in essence similar, containers are designed to
rapidly provision and scale software on on demand by minimizing resources consumption
and offering high portability.

Figure 9: Virtualization architectures [Pah15]

45 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

The foundation for achieving fast deployment, portability and scalability lies in the lightweight
characteristic of the container technology, namely the main difference with respect to the
virtual machine concept. Figure 9, outlines the main differentiation between the virtual
machines and containers. As we can see form the Figure 9, the container virtualization
concept unlike the hypervisor virtualization does not require to boot the operating sys-
tem, and even the binaries and libraries can be left out in some cases. The isolation of
namespaces within containers offers us the ability to configure and install dependencies in
a closed environment independently from the host OS. Therefore individual processes and
services that are deployed in the container environment are migrated together with the
container itself as a coherent service package. In addition, the isolation of services or its
components results as increase of security by reducing the manoeuvring capabilities of a
service. Within a single container diverse application, service, supporting libraries and de-
pendencies, as we can see from the Figure 10, can be deployed. Therefore, containers ease
the development, deployment and maintenance of applications and their dependencies,
offering at the same time high reusability and portability.

Figure 10: Virtualization architectures using Containers [Pah15]

Moreover, the flexibility offered by container environments gives us the ability to design
and deploy composite service architectures; and gain more control of service components
in terms of security by limiting the capability of a service to a single container. The current
approaches are focused on defining policies, such as host-hardening standards, versioning
and configuration management of applications and services hosted within a container9.
When taking into the consideration security for designing composite services, we have to
focus on following challenges:

1. workflow of both information and services
2. internal and external privileges and access control model
3. deployment environment and circumstances
4. containerization technology
5. support for common security controls
6. operations management and configuration governance

Secure deployment within Prismacloud. Within Prismacloud we recommend the
use of secure containerization technologies for service deployment, preferable based on
Open Source Software with broad provider support, e.g., Docker or LXC/LXD-based

9Container security: Twistlock - https://www.twistlock.com/,
Docker - https://docs.docker.com/engine/security/security/,
Veritas - NetBackup CloudStore Service Container - https://www.veritas.com/support/en_US/article.
000078835

46 of 145

https://www.twistlock.com/
https://docs.docker.com/engine/security/security/
https://www.veritas.com/support/en_US/article.000078835
https://www.veritas.com/support/en_US/article.000078835

D7.6 Guidelines and Architecture for Secure Service Composition

solutions that allow for best interoperability, scalability and portability with least possible
memory and storage overhead.

3.6 Standard Identity Provisioning and Management

Identity provisioning and management is an important task in distributed systems—which
our pilot applications will definitely be. Therefore, we foresee the possibility to use a
central identity service which is also capable to provide hard electronic identities in a
standardized and interoperable way. Connecting the Prismacloud pilot to the European
eID system demonstrates the seamless integration of our services with efforts going on in
the area of electronic identification and trust services for electronic transactions (eIDAS)
and the digital single market (DSM).

Especially for cloud services, identity management is becoming more and more important.
The challenge is to manage accesses to applications and data from many different locations
and devices while still ensuring security. For this reason, partner XiTrust will provide an
identity management service that equips the users with hard electronic identities. These
are especially made for identification and authentication at a high assurance level and are
based on qualified certificates. The process of getting such an identity looks like this:

1. A user who wants such an identity, visits a registration officer. Furthermore, the
user needs to have a valid passport and a mobile phone for the registration process.

2. During this process the registration officer enters personal information of the user,
such as mobile phone number, birthday and other information from the passport.

3. The user chooses a revocation password if he/she wants to revoke his/her certificate
of the hard eID and a password that he/she needs whenever the person wants to
sign a document or authenticate him-/herself.

4. In the next step the registration officer guarantees with his/her hard electronic iden-
tity that the registering person is really the person he/she pretends to be and that
all the entered information is correct.

5. The registering person now owns a valid identity and can sign documents and au-
thenticate him-/herself with his/her hard electronic identity.

The partner XiTrust will be responsible for the identity management and employs the
so called registration officers (RO) and central registration officers (cRO). These central
registration officers are special ROs, who have been certified to educate persons as ROs.
This partner is therefore able to equip all partners with hard eIDs or, if wanted, can
educate people from other partners as ROs.

Use Case. If a person has gotten a hard electronic identity and he/she wants to use it
now, he/she just needs to open the login page of an application and choose the mobile
phone login option. The user is then asked to enter a mobile phone number and the
corresponding password which looks like as illustrated in figure 11. In a next step the user
receives a one-time password on his/her mobile phone which needs to be entered into the
login mask as well. This login mask is shown in Figure 12. Alternatively, the user can
handle the login with a QR-code instead of a one-time password. In this case a QR-code

47 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

will be displayed on the screen of the user and he/she needs to scan this QR-code with
the appropriate Application on his/her mobile phone. The user is now authenticated;
the process for digitally signing a document is identical. The signatures that can be
created with this hard electronic identity are so called qualified electronic signatures and
are therefore legally equal to handwritten signatures.

Figure 11: Mobile phone number and password request for the login

Figure 12: One-time password request for the login

eIDAS Regulation. The hard electronic identities from above are compliant with the
eIDAS regulation and are therefore valid in the whole of Europe. The Regulation (EU)
No 910/2014 on electronic identification and trust services for electronic transactions in
the internal market (eIDAS Regulation) was published on July 23rd, 2014 and shall apply
as of July 1st, 2016. This regulation establishes a framework ensuring that a user’s na-
tional electronic identity issued in one Member State is also valid in another EU Member
State and is the reason why the electronic identities from above are valid in whole Eu-
rope. Additionally, an interoperability framework will be established to simplify electronic
interactions between businesses, citizens and public authorities from different countries.
Especially the electronic seal is very interesting for companies as they can authenticate
all their electronic assets with it. Until now it was necessary that a natural person, repre-
senting the legal person, signed the electronic assets to guarantee authenticity. The goal
of this regulation is to enhance the trust in electronic transactions throughout the Euro-
pean market and to eliminate obstacles when using electronic identification means across
borders. The regulation covers the creation, verification and validation of the following
trust services:

48 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

• electronic identification of natural and legal persons
• electronic signature (as well as advanced and qualified electronic signatures)
• certificate for electronic signatures and seals (as well as qualified certificates for

electronic signatures and seals)
• electronic seal (as well as advanced and qualified electronic seals)
• electronic time stamp (as well as qualified electronic time stamp)
• electronic registered delivery services

49 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

4 Prismacloud Services

This section provides basic documentation of the Prismacloud services according to the
guidelines defined in the previous section. It is intended as a major part of the service
documentation and serves as a comprehensive reference manual for service-level
adopters of the project’s results. The current documentation was also a first successful
test for implementation of CryptSDL in the project consortium and showed the potential
of documentation standards in research projects.

4.1 Secure Archiving (SAaaS)

4.1.1 Overview

The secure archiving service (SA or SAaaS) is tailored for creating reliable and trust-
worthy backups. Its functional key requirements are motivated and derived from our
e-Government use-case but have been designed to be compatible with commonly encoun-
tered backup scenarios. Within this section we initially introduce general backup ideas
and key-features, explain the proposed service view, discuss functional requirements in
detail and finally focus upon the security impact upon our user-case prototype.

The general idea of the secure archiving service is to provide an extremely reliable secure
storage back end for backup and archiving purposes. The former places high importance on
transparent, easy and quick access to data while providing excellent integrity guarantees.
The archiving use-case focuses upon data retention over long time periods. Commercial
solutions offer additional features such as searching over backup data which are diametrical
to data confidentiality and privacy. Within our prototype we focus upon confidentiality
and assume that commercial solutions can incorporate our component as core storage layer
and add additional features such as searching on top of it.

Key design concept was to enable hybrid cloud storage scenarios, i.e., the system can
be scaled-out to integrate public cloud offerings as with existing interfaces. The Simple
Storage System (S3) standard from Amazon emerged as a de-facto industry standard API
in the cloud storage domain. Therefore we are designing the service to be compatible with
this standard on both sides, the back end storage level as well as to the client.

4.1.2 Key Features

In the following we present the major advantages of the service. The following list also
highlights the relevance of different benefits, whether they are more relevant for typical
archiving (Arch) or backup scenarios (Back).

• Increased data privacy and availability (Back/Arch): The usage of threshold secret
sharing schemes for data sharing improves both data privacy and availability. In
a multi-cloud configuration, a single provider only holds a data fragment and is
not able to read or tamper plaintext data. When using computational secure shar-

50 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 13: Secure Archiving (SA) overview.

ing (CSS) the resulting system delivers the strengh of replicated encrypted backup
solutions while improving efficiency and flexibility, i.e., it helps with integrated busi-
ness continuity features. Availability is improved as no single instance has a crucial
impact to the overall system performance.

• Prevent from vendor lock-in (Back/Arch): Using a multi-cloud capable distributed
approach for data storage prevents provider lock-in. When data is dispersed over
multiple zones or providers, interoperability and portability is included by design.
If new offerings are more appealing or existing cloud provider change their policies,
customers can switch to new providers without service interruption due to format
operations and interface compatibility problems.

• Keyless (credential based) operation (Back): The major difference to encrypted so-
lutions is the keyless nature of secret sharing based systems. Their security is based
upon the non-collusion assumption of storage providers: this assumption can be re-
alized by the usage of different administrative zones, different data centers or the use
of different cloud providers. The keyless operation has advantages over encrypted
backups: on one hand, encrypted backups or archives require a secret key to be
maintained over the entire lifetime of the data. The whole backup redundancy be-
comes obsolete if the respective keys are lost, i.e., key management thus becomes a
critical element which needs to be done on site. On the other hand, selective shar-
ing of the data with different stakeholders is not easily possible for encrypted data
because secret keys have to be shared or public key infrastructures have to be set
up.
However, for secret shared data an access control system is inevitable to control
access to data fragments. This would not be necessary for encrypted data, but is

51 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

typically also used there to prevent ciphertexts being exposed to untrusted entities.
In the end, the most important difference lies in the security model, i.e., secret key
vs. non-collusion based security, which require careful consideration in for the given
use case and type of data. Ideally both options are combined the get the best of
both worlds, which is what we also support with our Prismacloud secure archiving
service.

• No data remanence (Back/Arch): Because the single storage servers do not have
access to plaintext data, specific destruction techniques are not necessary for timed
data deletion. In general it is not possible to securely delete data on cloud infrastruc-
tures. If data confidenciality is of importance, i.e., due to sensitive data, encryption
has to be used. This encryption has to be performed on the client: if server-side
encryption is employed, keys are at some point in time present at the remote system
and could eventually be recovered by forensic means.

• Support for long-term security (Arch): When security is more important than stor-
age efficiency, data can be encoded with perfect secret sharing (PSS). Such a scheme
delivers perfect or unconditional security which is provably unbreakable. Using a
PSS, one can protect data that needs to be confidential even over decades. However,
it is important to note, that the security is governed by the non-collusion assumption
which is fundamentally different from standards secret and public key cryptography.
Nevertheless, because there do not exist any other perfectly secure scheme for data
storage, this is the best what can be done with this respect. For better collusion re-
sistance we recommend to combine the system with secret or public key encryption,
i.e., to get the best of both worlds.

• Support for multimodal encryption (Back/Arch): To get the best of both worlds, the
services supports both modes of encoding, efficient CSS and long-term secure PSS.
The modes can be configured on a bucket or folder level to enable storage of bulk
data along with high efficiency (CSS) and with classified or sensitive information with
highest security (PSS) in the same system. Additionally, the encryption support is
also integrated as a means for collusion resistance and increased security.

• Support for remote system auditing : To enable the SAaaS provider to regularly
check the consistency of the data stored on the storage nodes we provide an efficient
protocol with minimal network overhead to audit the state of the system. If the
system passes the audit procedure, it is guaranteed that all storage nodes are still in
possession of all stored fragments. If an error is detected by the auditing mechanism,
a repair procedure is triggered to synchronize the corrupted node(s) with the system
state. As long as the preconfigured minimum number of nodes is still available, the
systems stays fully operational. If the SAaaS provider is serving multiple customers,
we offer the opportunity of bulk auditing data of multiple customers at once to gain
high-efficiency audting. This would not be efficiently possible with other remote
data checking technologies.

• Can leverage public cloud storage (Back): All components of the Prismacloud
SAaaS service are designed for deployment on public clouds, i.e., they do not use
any specific low-level functionality or infrastructure-dependent internal interfaces.
The whole distributed storage layer can be deployed as an overlay architecture on

52 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Helpful
(to achieve the objective)

Harmful
(to achieve the objective)

In
te

rn
al

or
ig

in
(p

ro
du

ct
/c

om
pa

ny
at

tr
ib

ut
es

)
E

xt
er

na
l

or
ig

in
(e

nv
ir

on
m

en
t/m

ar
ke

t
at

tr
ib

ut
es

)

Data privacy
and availability

Integrity and robustness
Key-less operation

Remote data checking
Multimodal security

Slower write ops.
Repudiation

No Authenticity

High compatibility
No vendor lock-in

No computational overhead

Non-collusion assumption
Access Control

Repudiation

Figure 14: SWOT analysis of Secure Archiving Service (SAaaS).

top of existing industry standard public cloud offerings. The SAaaS gateway service
is a Java based application which can be deployed on any technology, e.g., in a
dedicated virtual machine or an event driven framework. The gateway is intended to
be deployed by a CSP which is offering the service to customers, i.e, it is assumed that
he has full control over the software stack. However, because the gateway is a Java
application it is agnostic to the underlying technology. The storage nodes used to
store the fragments can be any storage compatible to the Amazon S3 (Simple Storage
Service) protocol, the de-facto industry standard for object storage. Additionally to
the basic S3 compatibility, for the auditing feature to work the cloud should also
support compute capabilities like virtual machines or containers. They are necessary
to support the auditing capabilities, do activity monitoring and provide proactive
security for long-term archiving.

• Integration with Legacy Systems: Finally, to enable efficient integration, the user-side
interface to the storage architecture is also S3 compatible. It enables customers to
transparently run highly reliable and secure distributed S3 storages without special
software. After setup, the service can be used as a direct replacement for S3 based
backup solutions.

In Figure 14 we show a SWOT analysis of the given service.

53 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

4.1.3 Usage model and stakeholders

As shown in Figure 13 the scenario assumes the concept of a trusted gateway managed by
a trusted provider entity. Three different classes of stakeholders are involved:

• The Cloud Customer, also called client, gets access to a secure multi-cloud storage
solution through an accessible industry standard interface (Amazon S3). He is able to
leverage the benefits of such a system without complex management of a distributed
system or dealing with installation and management of the Prismacloud SAaaS
software. However, as the SAaaS gatway operator is fully trusted, the consumer
needs a good trust relation to that operator.
• The SAaaS Provider is running and maintaining the SAaaS gateway. He is managing

the storage providers in the backend as well as the software running there—they are
managing the whole overlay architecture on behalf of the customer. The SAaaS
Provider could also be a storage provider. In this case, he might be using the secure
cloud storage as scale-out storage option to achieve higher availability and security
guarantees.
• The Storage Provider is holding data fragments of user data and serves as a so

called zero-knowledge storage provider, i.e., he has no access to plaintext data. No
special requirements are necessary except for the possibility to also support an active
compute instance. Furthermore, the availability guarantees required from the storage
provider are minimal and they do not need to provide internal replication. The good
availability comes from the system architecture and build in redundancy and not
highly reliable SLA for individual provider level.

4.1.4 Service Model and Interaction Dynamics

The high level component diagram shown in Figure 15 shows the main concept plus re-
quired software components which are interacting in the system:

• Client: This is the customer application using the storage service. Because SAaaS
is providing a S3 compatible interface the requirements on the client side are min-
imal. Basically all S3 compatible software solutions can be used together with the
Prismacloud SAaaS solution. For configuration a special admin interface must be
provided to the customer which enables access to the specific settings available in our
system, however, this is specific to the implementation and can be made available
over a different web service.
• Secure Archiving Service: This is the main component of the system and serves as a

gateway to the clients run by the SAaaS provider. The archiving service comprises
two main components, the storage gateway and the auditing module.

– The storage gateway is doing all the fragmentation (encoding) and defragmen-
taton (decoding) of data and manges the storage nodes. It exposes an S3
compatible REST interface to the client and uses S3 storage services in the
backend, i.e., it intends to be compatible with industry standard and serves as
a drop in replacement for using plain S3 storage solution with a single provider.

54 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

– The auditing module is responsible for system monitoring and data checking. It
gathers relevant information to assess the system state, checks SLA compliance
on both sides, to the customer and of the storage providers. Additionally he
also regularly triggers a storage audit which checks the integrity and availability
of the data in the overall system.

As mentioned in the client description, an additional administrative interface will
also be required to manage the system settings. Because this is very specific to
the scenario and not relevant to the overall system it is not specified in the service
architecture.
• Storage Node: This is the component providing storage for fragments. It represents

a node in the storage network and comprises following two components.
– Object Storage This is the standard IaaS passive object storage used to hold

the fragments. No more than a minimum set of standard S3 IaaS storage capa-
bilities is expected to be compatible with Prismacloud SAaaS. Provisioning
and management of resources is done by the secure archiving service.

– Security Monitor This element is required to support additional functionalities
provided by the archiving service. It is a software component which has to
be run on the storage provider side and needs access to the local data. It
is controlled by the auditing module of the SAaaS and executes the auditing
procedure if triggered. It also collects monitoring information and preprocesses
log trails if requested.

4.1.5 Provider/Consumer Scope of Control

The deployment of the secure archiving service is involving more parties than a typical
archiving service. This is due to the nature of the service which is intended as a virtual
storage service built on top of multiple individual storage offerings. For the secure archiv-
ing service we introduced the SAaaS provider which is offering and managing the secure
gateway functionality as a service. He or she is in full control of the Prismacloud SAaaS
middleware Archistar. The scope of control in the software stack is shown in Figure 16
and discussed in the following.

• Cloud Consumer: To foster quick adoption of the service, the cloud consumer scope
of control is reduced to an absolute minimum. It should resemble the standard usage
experience of S3 cloud storage with only minimal additional controls exposed to the
user. The consumer has no specific software components to operate and manage
apart from the S3 client software used to access the storage system for data up- and
download.
• SAaaS Provider: The SAaaS provider is responsible operating the Prismacloud

Archistar middleware software solution and also for hosting the SAaaS service. To
host the archiving service they have to run the storage gateway software and also
the assurance module. Additionally to the local deployment the SAaaS provider is
also responsible to manage the object storage of the various storage nodes and to
operate and manage the security monitor component.
• Storage Provider: This is the IaaS provider provisioning the real storage space which

55 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 15: Interaction dynamics for secure archiving service.

Hardware

OS / Storage

Middleware
(Container and Java)

Application

Storage
Gateway

Audit/Assur.
Module

Hardware

OS / Storage

Middleware
(Container and Java)

Application

Audit/Security
Monitor

Admin Control
Limited Control No controlTotal control

Manage Size,
Resiliency Level

Security Level

Assurance Level,
Audit Frequency

Total Control

Total Control

Total Control
Deploy SA

Software on
Container

Service of VM

Legend:

Trusted CSP

 Provider | Consumer

C
lo

ud
 C

on
su

m
er

(C

lie
nt

)

U
nt

ru
st

ed
 C

S
P

(P
ub

lic
 C

lo
ud

)

No Control

Configure Event
Handling Engine

Mange Storage
Size, Credentials

and ACL

Figure 16: Scope of contol secure archiving service deployment.

56 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

hold the data fragments. He full control over his own infrastructure and is able to
access all data stored. Furthermore, he is also hosting the security monitor in his
compute infrastructure but has no obligations nor access to it. However, because
the security monitor is running in his infrastructure he cannot be prevented from
inspection of the security monitor component. However, the security monitor has
no critical information and is just executing commands from the assurance modules
and not containing any sensitive information.

4.1.6 Parameters

When secret sharing or information dispersal is applied to increase security and availabil-
ity in data storage, the threshold configuration parameter k of the sharing algorithm is
essential to set the level of security and the redundancy n − k is the main parameter to
tune the reliability and availability of the overall virtual storage system. Detailed models
to calculate availability and corresponding overhead considerations are discussed in the
SECOSTOR tool specification in deliverable D5.3 and more advanced decision support
models have been developed and analysed in D7.3 and D7.4. The capability models of
D7.3 also present detailed solutions also considering geo-location constraints.

4.1.7 Application Development

Attack Surface Analysis

Within the Backup use-case the user-facing service is an Amazon-S3 compatible Backup-
Service where users can upload, list and download plaintext backup data. The service
itself performs secret sharing (which splits up plaintext into multiple shares, a subset of
which is needed to reconstruct the original data). The created shares are distributed upon
multiple storage locations. All this functionality is provided by the backup service which
is fully trusted.

The network-based attack surface is based upon the Amazon REST interface provided
(front-end) and consumed (back-end) by the Backup Service. We only provide a subset of
data operations, thus further limiting the attack surface. On the front-end, the following
operations are provided:

• list data buckets
• list files within data bucket
• add file to data bucket
• retrieve file from data bucket
• delete file from data bucket
• copy file between data buckets

The back-end utilizes an even smaller subset of operations:

• add file to data bucket
• delete file from data bucket

57 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 17: Attack surface model for secure archiving service.

As this is a new project, we are not encumbered by existing legacy protocols that must
be integrated for product integration. This allows for a slim service interface without
duplicate operations.

We deploy the application server directly, i.e., without an additional web-application re-
verse proxy or web-application firewall. There is no distinction between user groups for
those operations, i.e., this further reduces the attack surface.

When it comes to file-based attack-vectors, we separate configuration data from user data.
User-data is processed by secret sharing by the storage gateway. When using perfect secret
sharing this removes all outgoing data from the attack surface. If using computational
secret sharing, the security of outgoing data is exactly the security of the symmetric
encryption scheme (e.g., AES with a suitable mode of operation) and can thus be removed
from the attack surface. We do not cache unencrypted user-data on-disk within the backup
gateway. In sum, no user-data is part of the attack surface.

All front-end bucket configuration (including user accounts, credentials and access rights)
is stored within the storage gateway. Access location and credentials for back-end storage
is also stored within the storage gateway. Both elements are sensitive and thus part of the
attack surface.

Figure 17 summarizes our potential attack surface.

Gathering Threats with STRIDE

We utilized the Microsoft Threat Modelling Tool to arrive at Figure 17. This model was
base for automatic threat geneation, the a representation of the results can be found in

58 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

the appendix in Section B.1.

All threats were further analyzed, i.e., verified that the threat is applicable and not miti-
gated through our chosen architecture. The following table gives a rough overview of the
resulting threats:

STRIDE Category Original Not-Applicable Mitigated/Design Resulting

Spoofing 9 4 1 4
Tampering 6 1 2 3
Repudiation 13 1 1 11
Information Disclosure 7 0 1 6
Denial of Service 13 4 4 7
Elevation of Privilege 5 0 0 5

Total 53 10 9 34

Non-applicable threats are explained by our trust assumptions: the whole backup gateway
is assumed to be fully trusted thus reducing the threat arising from communication between
internal components such as caches or configuration files.

Threats mitigated by design can be explained by our reliance upon secret shared data
within the cloud. As no plaintext data is stored within the cloud and no single cloud
provider has total control over data, two areas are greatly reduced: denial of service and
tampering. It can be argued, that these are the areas that benefit from our security by
design approach.

Please note, that we only added a single cloud provider within our STRIDE diagram.
If we would add a realistic amount of cloud providers (e.g., five) the number of threats
mitigated by design would also rise. The 36% threat reduction seen in this example are
thus the minimal threat reduction experienced.

Analyzing and Mitigating remaining Threats

Threats were rated according to ISO 27005 in two dimensions: business impact and like-
lihood of occurrence. Both rankings ranged from 0 (”minimal impact”) to 4 (”critical
impact”).

For Business Impact we have chosen the maximum ranking of 4 for all threats that either
allow for unrestrained data modification or user impersonation. Loss of user data would
imply a critical business impact. If the business-provided service’s availability is compro-
mised, a base ranking of 3 was given. If attacks only impacted a small user amount (i.e.,
only users adjacent to a network path) the impact was lowered by one.

The ranking for Likelihood was influenced by the technical complexity of an attack as well
as by current trends within web exploitation techniques (as given by the OWASP Top 10).

59 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

ID Threat Business Impact Likelihood Result

15 Potential Process Crash or Stop for Web
Service

3 3 6

16 Data Flow HTTPS Is Potentially Inter-
rupted (between Backup Service and Web
Application)

2 2 4

17 Web Service May be Subject to Elevation
of Privilege Using Remote Code Execution

4 3 7

18 Elevation by Changing the Execution
Flow in Web Service

4 3 7

25 Insufficient Auditing (outgoing traffic) 3 1 4
26 Potential Weak Protections for Audit

Data
2 1 3

27 Weak Credential Storage 4 2 6
33 Potential Excessive Resource Consump-

tion for Web Service or Cache
1 2 3

41 Access to Configuration Files is poten-
tially interrupted

2 2 4

44 Spoofing of the External Web Application
External Destination Entity

3 3 6

45 External Entity External Web Applica-
tion Potentially Denies Receiving Data

2 2 4

48 Risks from Logging 1 2 3

In this example, the risk ranking indicate that Elevation of Privilege attacks (ID 17 and
18) are of the highest concern, followed by multiple Denial-of-Service attacks (ID 15, 27
and 44). Due to our secret sharing approach, there are limited risks arising from the
remote cloud storage providers.

STRIDE provides a catalogue with countermeasures for detected threats. As part of
our secure development life-cycle we have selected key countermeasures that must be
implemented within our prototype to further mitigate resulting threats. The Table in 18
gives examples of high-level mitigation techniques.

The archiving scenario allows us to mandate strong authentication and authorization
between the archiving client and our backup storage service. This reduces threats from
the Spoofing identity, Tampering with data and Denial of Service categories by-design.
The software architecture was designed to run with minimal user rights thus reducing the
likelihood of Elevation of Privilege attacks.

The usage of secret sharing for securing external data storage (within the external cloud
data providers) further mitigates threats as this implicitly reduces the categories Spoofing
Identity, Tampering with Data, Denial of Service and Information Disclosure. The backup
service is fully trusted by design, this mitigates Repudiation as this service can be used
for creating trusted audit trails.

To fulfill a threat, an attacker exploits vulnerabilities. The OWASP Foundation releases

60 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Threat Type Mitigation Techniques Concrete Examples

Spoofing Identity Appropriate authentication All connections authenticated
Protect secret data verify that cloud credentials are dis-

tinct
Don’t store secrets not applicable

Tampering with data Appropriate authorization All connections authenticated
hashes Usage of RSS/VSS
MACs Usage of RSS/VSS
Digital signatures Usage of RSS/VSS
Tamper resistant protocols Implicitly through Secret-Sharing

Repudiation Digital Signatures Logs will be signed
Timestamps Backup Service provides trusted

timestamps
Audit trails Backup Service provides trusted au-

dit trails

Information Disclosure Authorization All connections authenticated
Privacy-enhanced protocols done by design
Encryption Provided by Secret-Sharing
Protect secrets Only stored within Trusted Backup

Service
Don’t store secrets not-applicable

Denial of Service Appropriate authentication All connections authenticated
Appropriate authorization perform authorization against

trusted backup service
Filtering not-implemented (yet)
Throttling rate-limits per user implemented
Quality of Service not implemented (yet)

Elevation of Privilege Run with least privilege backup service runs with normal
user privileges

Figure 18: STRIDE Threat & Mitigate Technique list (from OWASP)

61 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

bi-yearly lists of the most common vulnerabilities for web applications. The following
table overviews how the chosen architecture mitigates some of those vulnerabilities.

Vulnerability Counter-measure

XSS Injection API-only interface, no HTML or JavaScript code
will be executed

Injection all data-access must be sanitized, i.e., use sanita-
tion libraries as well as ORM

Broken Authentication and Session
Management

usage of framework-provided session framework to
prevent home-grown vulnerabilities; all access must
be validated

Insecure Direct Object References see Broken Authentication and Session Manage-
ment

Missing Function Level Access Con-
trol

see Broken Authentication and Session Manage-
ment

Using Components with Known
Vulnerabilities

indirectly solved by secure component selection

Unvalidated Redirects and For-
wards

not-applicable to API-only application

Validation

Validation is an important step during the secure software development life-cycle and
highly depends upon prior generated artefacts:

• a written-down attack surface description allows validation of minimalism
• during testing the implemented attack surface, i.e. API, is compared to the designed

attack surface and must be equal or smaller
• during validation, countermeasure against all identified vulnerabilities are validated

and documented
• additionally identified vulnerabilities are used as input for the next iteration of se-

curity engineering as well as checked-against within other scenarios. This feedback
loop allows for continuous improvement of our scenario’s prototype security.

4.1.8 Operational Aspects

In this section we present a preliminary security assurance model for the secure archiving
service according to the approach proposed in [HTL+14]. The basic idea is to derive a
monitoring strategy for a security monitor component, which is intended to continuously
assess the system status.

62 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

We did this step for the secure archiving service, however, for the remainder of the services
this is out of the scope and we do not give such detailed modeling. Instead we discuss
general important operational aspects where necessary and report lessons learned from
the evaluation of the pilots in WP8 reports.

In the following, we will illustrate the assessment of the secure archiving service that we
simplify by only focusing at its core part, depicted in Figure 19. The security requirements
are monitored by validating infrastructure security conditions via security properties. We
outline an exemplary set of security properties clustered across security classes (confiden-
tiality, integrity and availability) in Table 4.

Table 4: Assurance security properties and corresponding classes analyzed and developed
under the scope of EU FP7 research project SECCRIT.

Assurance Class Security Property

Confidentiality

CSP1 - Concurrent session control
CSP2 - Password Rotation
CSP3 - Strong Password
CSP4 - Maximum shares per zone
CSP5 - Encryption

Integrity

ISP1 - System/Service Integrity
ISP2 - Information (Data) Consistency
ISP3 - Alteration Detection
ISP4 - Error Correction

Availability
ASP1 - Geo-location
ASP2 - Service Availability
ASP3 - Service Isolation

Furthermore, we illustrate per each assurance class from Table 4 a single security property
policy, Table 5, and detail how it is being validated/monitored across our architecture
model Figure 19.

For illustration purposes we propose from Table 4 a security property evaluation set (e.g.,
ES = {CSP1, CSP2, CSP3, CSP4, CSP5, ISP1, ISP2, ISP3, ASP1 }) that is used dur-
ing our security assurance assessment process. The evaluation set is used consistently at
client, tenant and infrastructure level to validate security condition of each entity. This
is necessary to show that the infrastructure, i.e., trusted zones, where the data shares are
deployed is reliable with regards to our evaluation criteria defined by the ES. Therefore,
each individual trust zone, across all availability zones, must be validate against ES. The
above mentioned evaluation set ES in the assurance assessment framework is used in a
form of a bitvector, where each bit corresponds to a particular security property in the
exact ordering as defined in the ES. Next, each property is validated per an individual
component of our secure archiving service depicted in Figure 19. To derive the overall
security assurance results we have to aggregate the results towards the root of our service,
in this case client service. The aggregation process is conducted by performing horizontal
and vertical security assurance aggregation. Horizontal security aggregation process ag-

63 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Table 5: Assurance Class Integrity - Security Property System/Service Integrity

Layer Monitoring Points

ASP - Service Availability

Infrastructure Cloud Infrastructure availability is validated.

Tennant Availability of VM and storage (e.g., S3 bucket) that holds the
shares is validated.

The auditor runs the Remote Data Checking (RDC) protocol to
verify the correctness of stored shares.

Trusted gateway is availability is measured.

Client Secure Archiving service configuration files consistency is validated
to detect any changes from predefined configuration setup.

ISP - System/Service Integrity

Infrastructure None.

Tennant The authenticity of software running on the trusted gateway is
validated to detect any changes.

The correctness of VM and storage configuration is validated to
detect any changes from predefined configuration setup.

Client Secure Archiving service configuration files authenticity checked.

ASP - Maximal Shares

Infrastructure Number of shares across all availability zones per Cloud Service
Provider must be lower than threshold.

Tennant Storage containers are validated against maximum number of pre-
defined shares.

Distribution process of share across individual trust zone is vali-
dated.

Client None.

64 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

gregates security results in a horizontal manner across components that reside under the
same parent element, i.e., trusted zone components. Vertical security aggregation process
aggregates security results in a vertical manner by aggregating either the results of hori-
zontal aggregation or a single child parent relation. In case of our secure archiving service
we first perform vertical aggregation of storage service towards the VMs containing our
storage service, and the perform horizontal aggregation first of the results at individual
trust zone and then between the trust zones. Afterwards the results are vertically aggre-
gated towards the root against the trusted gateway and finally with the root client service
itself. The auditor is in this particular case used only as a supporting tool for our security
assurance process.

Figure 19: Secure archiving assurance use case

The Table 6 outlines how does our security assurance framework address individual design
requirement. The protection of confidentiality and availability is supported by assurance
framework with security properties (CSP1,CSP2,CSP3,CSP4,CSP5, ASP1,ASP2,ASP3)
from confidentiality and availability classes (SA.Req.01). The audtiability is a process that
is integrated as a part of the assurance framework as a standard process that establishes
the audit trail of the acquired security information (SA.Req.02). The deployment of the
assurance framework can be outsourced to a third party, or even hosted locally, in such
a form that the processing and transformation of essential security sensitive information
remains on site, and the auditing part is place on the third party infrastructure (SA.Req.03,
SA.Req.04, SA.Req.05). Furthermore, the audit established by the assurance framework
is used to offer guarantee that across a certain period of time security requirements are
set in place (SA.Req.06). The assurance framework is implemented in such a fashion to
address the processing of large scale data (SA.Req.08).

65 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Table 6: Mapping requirements of the secure archiving service towards the assurance
security properties.

Requirement Mapping

SA.Req.01 The Assurance model supports confidentiality and integrity by validating the
following security properties: CSP1,CSP2,CSP3,CSP4, ASP1,ASP2,ASP3

SA.Req.02 The Assurance module checks if remote data checking protocol is supported
and run on a regular basis.

SA.Req.03 The Assurance module can be hosted both on- and off-site, because it has no
access to plaintext information.

SA.Req.04 The Assurance module can trigger privacy preserving audit runs various re-
mote server and do a quorum for on the result.

SA.Req.05 The Assurance module checks if ITS secret sharing is used for data.
SA.Req.06 The Assurance module validates that proactive security measures are enabled

and run on a regular basis.
SA.Req.07 The Assurance modules checks the state of the BFT modules at the different

server nodes and compare them.
SA.Req.08 The Assurance model checks if batch auditing is supported and if it could be

applied over data of multiple users.
SA.Req.09 The Assurance model validates the following security properties:

ISP1,ISP2,ISP3,ISP4 and triggers rebuild operations if necessary.

4.2 Data Sharing (DSaaS)

4.2.1 Overview

The general idea of the data sharing service (DS or DSaaS) is to support the creation of
cloud-based collaboration platforms similar to well-known cloud-based consumer solutions
while heeding stronger privacy and availability guarantees. The data sharing service allows
multiple parties to securely store data in a multi-cloud network without giving single
providers the ability to read the data. Although the data is protected from all kind of
provider related threats it can still be shared with other users of the system in dynamic
groups. To fulfill this idea we are using the Secure Object Storage Tool as base.

In contrast to the secure archiving service, no single point of trust or failure shall exist in
the data sharing service and all encryption and encoding is entirely handled at the client
side. This configuration gives the highest level of privacy but introduces complex con-
figuration and system management. Also contrasting, we assume the archiving use-case
to utilize short-time storage, thus having reduced storage and performance requirements.
This fits very well with the evidence gathering and sharing requirements of the law en-
forcement use-case.

An overview of the overall service and deployment model for the data sharing service is
given in Figure 20. Although the data sharing service is based on the very same secure
object storage tool like the secure archiving service, it targets a completely different appli-
cation domain and often uses complimentary features. The trust models underlying those
two use cases are different. No trustworthy provider is assumed nor is a single user scenario
enough to cover the requirements. Furthermore, most of the clients have to be considered

66 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

untrusted and their operations should be verified and logged as good as possible.

4.2.2 Key Features.

The core benefits of the data sharing system are quite similar to the one of the secure
archiving service described at Section 4.1, but due to the different focus of the data sharing
service additional features are supported and others left away, e.g, long-term security is
not in the focus. In particular, the data sharing service provides the following key features:

• Increased data privacy and availability : The same as in SAaaS, see Section 20 for
details. These feature are given by the architectural design and the selection of used
algorithms.
• No provider lock-in: The same as in SAaaS, see Section 4.1 for details.
• Keyless operation: The same as in SAaaS, see Section 4.1 for details. Especially,

the benefits for selective sharing of data in dynamic groups without complex key
management can be considered a major benefit of the system compared to systems
using plain encryption technologies.
• No data remanence: Secure deletion is supported, like in the SAaaS, see Section 4.1

for details.
• Leverage public cloud storage: The same as in SAaaS, see Section 4.1 for details.
• Support multiple users and collaboration: The system supports multiple user at the

same time and can therefore be used to provide a storage service to organizations and
work groups. Furthermore, due to the keyless feature of the system collaboration can
be achieved easily and in a very dynamic fashion. Users can be added or removed
from groups and roles without the need for key revocation or re-encryption of stored
data.
• Concurrent access from multiple clients of multiple users is supported. The system

provides strong consistency guarantees and synchronizes the access in a robust way.
• Malicious client detection: In systems which apply secure information dispersal, the

consistency of stored data cannot easily be checked any more without revealing the
plaintext at some servers. This is a major problem in systems without single point
of trust and requires additional verifiability means. The Prismacloud architecture
provides efficient verifiability protocols which enable the system to check if the clients
stored consistent data, which is important if the clients can be malicious or have self-
interest to store corrupt data without being noticed.

In Figure 21 we show a SWOT analysis of the given service.

4.2.3 Usage Model and Stakeholders

As shown in Figure 20 we distinguish three basic types of stakeholders:

• The Cloud Customer is running the clients and should be a group of people, e.g.,
and organization or network of organizations, who want to collaboratively manage
information with high levels of security, privacy and assurance. They utilize a fully

67 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 20: Data sharing (DS) overview.

68 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Helpful
(to achieve the objective)

Harmful
(to achieve the objective)

In
te

rn
al

or
ig

in
(p

ro
du

ct
/c

om
pa

ny
at

tr
ib

ut
es

)
E

xt
er

na
l

or
ig

in
(e

nv
ir

on
m

en
t/m

ar
ke

t
at

tr
ib

ut
es

)

Data privacy
and availability

Support concurrency
and multiple users

Browser based (portable)
No single point of trust

Slower transac-
tion processing

Configuration overhead
Hard to manage

Platform independent
Robustness against

active server failures
Less trustworthy
provider needed

Non-collusion security
Access and user

mangement
Repudiation

Figure 21: SWOT of Data Sharing as a Service (DSaaS).

client-side encryption solution that securely disperses data over multiple data center.
There is no single point of trust or failure within the system. From the DSaaS
provider he gets trustworthy assurance reports about data access and malicious
client behavior.

• The DSaaS Provider hosts the web portal, maintains the software and runs the
assurance monitoring for the storage system. The DSaaS provider is responsible for
storing basic configuration and user data as well as managing access rights. However,
the DSaaS provider do not have any access to plaintext data and is therefore acting
as a zero-knowledge provider—the system does not need to be fully trusted and
therefore resembles a security and privacy friendly data management platform. The
assurance monitoring regularly collects access reports on all servers and runs audit
and verification protocol to check for corrupt nodes or malicious client behavior.
The assurance monitoring is done in a privacy preserving manner that the DSaaS
provider does not learn anything about the evidence data.

• The Storage Provider is holding the data fragments of user data and serves as an so
called zero-knowledge storage provider, i.e., he has no access to plaintext data. No
special requirements are necessary except for the possibility to also support compute
instances. A Prismacloud storage node always requires some remote logic to be
executed on the remote storage nodes to handle advanced features like verifiablity,
auditing or multiuser concurrency. Beside that, the availability guarantees required

69 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

from the storage provider can be minimal and no provider internal replication is
needed as availability is provided through the system’s architecture with built in
redundancy.

4.2.4 Service Model and Interaction Dynamics

The high level interaction diagram shown in Figure 22 shows the main components of the
system and their distribution to stakeholders.

• Client: This is the customer application enabling users to access the storage system.
The application will be fully web based and run as browser based application. It
is based on modern technologies like JavaScript, HTML5, CSS and WebSockets.
It performs all encoding and communication with storage nodes at the client side.
This way, no other component, not even the DSaaS provider, will ever have access
to plaintext information. Outsourcing the fragmentation of data to the client is
necessary to fulfil the requirement of having no single point of trust (but the clietn)
in the system.
• Datat Sharing Service: The data sharing service is hosted by the DSaaS provider

and comprises two main components, the portal server and the admin and assurance
module.

– The Portal and Application Server is the central connection point for both, end
users as well as admins. It hosts the main application software which is served
to the clients upon connection. It also stores encrypted configuration files to
the clients to facilitate high portability of the applications.

– The Admin and Assurance: The main server assists in administrative tasks like
user management and system monitoring. However, the data sharing service
does not have enough permissions to access plaintext data of users or similar
superuser capabilities known from local system administration. We assume a
honest but curious provider for a DSaaS provider. Thanks to the assurance
module, the DS service provider can check if the clients are acting maliciously,
e.g., by storing inconsistent and therefore corrupt data—not even the clients
need to be fully trusted to keep the system availble.

• Storage Node: Like with SAaaS, this component is responsible for storing fragments.
Unlike SAaaS, it is using a different architecture, interface concept, as well as pro-
vidign additional functionalities not present in the archiving approach. The storage
node consists of two main components, a server component and the object store.

– Server Component: This module is an active compute component which man-
ages all communication with clients, data sharing service, and other storage
nodes. It runs the various protocols required for the data sharing service rang-
ing from read/write/admin access of clients, the concurrency layer in conjunc-
tion with other storage nodes, as well as admin and assurance monitoring with
the central sharing service module. For communication with other server com-
ponents it uses secure connections based on TLS and for communication with
clients it supports WebSocket technologies.

– Object Store: general object storage based on Amazon S3 technology. Its inter-

70 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 22: Interaction dynamics for data sharing service.

71 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

face is only exposed to the server component and all communication is routed
over it. In that sense it only serves as the internal persistent storage.

4.2.5 Provider/Consumer Scope of Control

For our analysis we assume the Data Sharing service being a SaaS level service, quite
similar to well known services like Dropbox or the like. It would be also possible for
the client to deploy the software on his own and only leverage PaaS providers to run
the modules, however, this does not really impact our analysis except that the provider
side control is even more reduced. In general, the idea of the service is to maintain a
decentralized storage network without single point of trust or failure. The responsibilities
for the different layers in the cloud stack is shown in Figure 23.

• The Cloud Consumer or cloud service client is the user of the storage service and
should be able to upload, mange and share his data in a secure and privacy friendly
way. For best security the service is designed such that all crucial steps are done
locally in the web browser of the client, i.e., especially the encoding and dispersal of
data. The JavaScript code to be executed is delivered by the application server of the
DSaaS provider. Additionally, to work with the system credentials and some other
configuration data and states have to be stored on the client side. Alternatively, to
avoid local storage, important management data can be stored in encrypted form
on the DSaaS server or in another wallet. All non-sensitive information about the
user configuration of the storage network used is held on the DSaaS side and can be
configured there. If the service is offered for a group of people, a dedicated admin
will be able to manage the storage configuration for the whole group, e.g., a company
using the serivce. The client also controls additional features if made available by
the provider, like monitoring and auditing features.
Additionally, to control options at the application server, certain options have to
be set on the BFT-nodes individually. This is necessary for security and privacy
reasons, i.e., to avoid the application gateway have full access to plaintext user data.
In particular, the client directly manages access control lists for his data and users in
his responsibility, if any. He can also define audit trail settings and data remanence
times for secure deletion.
• The DSaaS provider is the application service provider. He is responsible for hosting

and maintaining the main application. Depending on the particular way the service
is implemented, he can additionally have the role of brokerage of storage nodes and
control according databases and peer to peer services. The DSaaS provider can
also offer additional monitoring services like remote data checking or maintenance
control. However, no matter how the service is designed in detail, he should have
not enough access rights to access data on storage nodes without user consent nor
be able to reconstruct plaintext data. The responsibility of the DSaaS provider is on
the brokerage, provisioning and procurement of BFT-nodes and the BFT network.
• The Storage Provider are responsible for providing the storage space and running

the BFT-nodes, which have to be made available to the clients. No special require-
ments are needed, except for the establishment of some trust relationship with the

72 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Hardware

OS / Storage

Middleware
(Node.js)

Application

BFT Node

Admin Control
Limited Control

No control

Total control

Manage non-
sensitive config;

Boostrap info;
Brokerage and

P2P sync settings
Auditing;

Monitoring

User management;
Secure deletion;

Audit trails;
Self-* properties

Legend:
C

lo
ud

 C
on

su
m

er

(C
lie

nt
)

P
ar

tia
lly

 t
ru

st
ed

 C
S

P
(P

ub
lic

 C
lo

ud
)

Hosts and manages node
software components as SaaS
(Alternative, if node software is
installed by client: No special
control for PaaS model)

Application
Server

Hosts and manages node
software components as SaaS
(Alternative, if node software is
installed by client: No special
control for PaaS model)

Figure 23: Overview of control scope for main type of stakeholders.

client side additionally to the DSaaS provider. Alternatively, if they are just PaaS
providers, the node software can be deployed by the client, but then he has also to
do the whole configuration and maintenance of the node software.

4.2.6 Parameters

When secret sharing or information dispersal is applied to increase security and availabil-
ity in data storage, the threshold configuration parameter k of the sharing algorithm is
essential to set the level of security and the redundancy n − k is the main parameter to
tune the reliability and availability of the overall virtual storage system. Detailed models
to calculate availability and corresponding overhead considerations are discussed in the
SECOSTOR tool specification in deliverable D5.3 and more advanced decision support
models have been developed and analysed in D7.3 and D7.4. The capability models of
D7.3 also present detailed solutions also considering geo-location constraints.

4.2.7 Application Development

Attack Surface

Within the Data Sharing use-case the data-sharing tool is implemented directly within the
client. After the client performs the secret-sharing operation, it distributes the generated
shares to the different active backend storage servers through an WebSocket interface.
Each provider in term is connected to backend storage—this can be directly attached
storage or remote storage such as S3. In the latter case credentials for the storage access

73 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

will have to be stored at the storage provider.

As this is a new project, we are not encumbered by existing legacy protocols that must
be integrated for product integration. This allows for a slim service interface without
duplicate operations.

We deploy the application server directly, i.e., without an additional web-application re-
verse proxy or web-application firewall. There is no distinction between user groups for
those operations, i.e., this further reduces the attack surface.

Operations provided between the user client and the storage service are very similar to
the backup scenario. The transport mechanism is different though: while Amazon S3 is a
HTTP-based protocol, WebSockets are stream-based. In general we assume the following
operations to be provided:

• sign in user
• sign out user
• list data buckets
• list files within data bucket
• add file to data bucket
• retrieve file from data bucket
• delete file from data bucket

The communication between the storage service and the storage itself utilizes an even
smaller subset of operations (which will be directly performed upon the file-system):

• add file to data bucket
• delete file from data bucket

When it comes to file-based attack-vectors, we have to analyze the client application as
well as the storage service. Within the Client credentials for accessing the storage services
have to be stored. In our envisioned browser-based setup we will use the browser session
storage or HTML5 storage for all credential data. In addition a browser cache might be
utilized to improve performance.

On the storage servers we also might have access credentials for the utilized backend
storage. As we will employ a BFT-protocol for providing high-availability each storage
service needs access credentials for each other storage service.

User-data is processed by secret-sharing by the user client. No plaintext user data ever
leaves the original client—this reduces the attack surface against sensitive data tremen-
dously. Figure 24 summarizes our potential attack surface.

Gathering Threats with STRIDE

We utilized the Microsoft Threat Modelling Tool to arrive at Figure 24. The generated
graph was the base for automatically generated threats—a first preliminary examination
of those resulted in the following table:

74 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 24: Attack surface model for the data sharing service.

75 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

STRIDE Category Original Not-Applicable Mitigated/Design Resulting

Spoofing 13 5 0 8
Tampering 6 0 0 6
Repudiation 6 0 0 6
Information Disclosure 4 0 0 4
Denial of Service 14 5 0 9
Elevation of Privilege 16 0 0 16

Total 59 10 0 49

When compared to the Secure Archive Scenario the main distinction is the placement of
the secret sharing functionality. In this scenario all secret sharing is performed within the
client (web-browser). This reduces the risk of data exposure as no unencrypted data ever
leaves the client but introduces a potential repudiation problem. With the Secure Backup
scenario the Backup Service was a trusted component that was utilized for creating audit
logs—in the Secure Sharing scenario we do not have this central component. In contrast
we utilize a byzantine fault-tolerant concurrency protocol to achieve distributed auditing
capabilities: as all audit data is stored on all connected storage servers we can audit logs
though simple majority voting.

Threats focusing around Denial-of-Service attack vectors were implicitly mitigated as there
is no central backup/sharing component that could become overloaded. To create a denial-
of-service situation, a malicious client would have to overload connected cloud storage
servers—their resource consumption will be directly billed to the originating client thus
creating a monetary defense against denial-of-service attacks.

This scenario is currently missing the administrative interface.

Analyzing and Mitigating remaining Threats

According to the STRIDE-Analysis Spoofing and Elevation of Privilege are the two largest
attack areas. To mitigate Spoofing all network connections will have to be authenticated
on the serverside. As the client is communicating directly with the storage servers we will
place high importance upon protective measures such as HSTS and proper SSL Validation.

To prevent elevation of privilege based attacks we will harden our client platform through
selection of suitable frameworks and libraries. All input data will be validated for malicious
code, all data output will be sanitized through central components.

4.2.8 Operational Aspects

The same ideas as for the secure archiving service apply. Because the security relies on the
non-collusion assumption — in the pure sharing mode — isolation of fragments have to
be maintained as good as possible. Only authorized users should have access to data and
no single cloud provider should have enough access rights to recover plaintext information
of users.

76 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

4.3 Selective Authentic Exchange (SAEaaS)

4.3.1 Overview

The service that allows for Selective Authentic Exchange is build upon the cryptographic
primitive of Redactable Signature Schemes (RSS). An RSS allows the signer to specify on
signature generation which parts are authorised to be redacted (content removed) subse-
quently without invalidating the digital signature on the remaining (not redacted) content.
This is enabled in the Prismacloud tool called FLEXAUTH, as well as in a hardware
security module (HSM) implemented in a field programmable gate array (FPGA) during
the course of Prismacloud. Additionally to making use of the tool the service offers ad-
ditional features regarding the messages it signs, produces and verifies. The FLEXAUTH
tool works on messages composed of strings and would not be easily integrated into the
message flow of existing services. Prismacloud enhanced the tool in this service to han-
dle (take as input to the sign, redact and verify operations) XML files. As the RSS is based
on asymmetric cryptography the service is storing and using cryptographic keys. This is
done inside the FLEXAUTH tool as well as inside the HSM. The secret key – which needs
to be guarded against unauthorised use – is only needed to generate signatures. It is not
needed for redactions, which with the chosen RSS from the FLEXAUTH tool is a public
operation. Of course the verification, like with standard signature schemes, would require
trusted, but public, signature verification keys, e.g. certified to be linked to a natural or
legal person by a public key certificate from a trusted certificate authority (CA). Note,
that the secret signature generation key is not supplied to the SAEaaS directly when call-
ing the sign functionality of the SAE part. Instead it is referenced by UserID given as a
parameter. The part called MOXIS in figure 27 is the FLEXAUTH library, also indicated
as the blue box in figure 25. As you can see in the figure, the SAE-service can call either
the hardware based implementation or the software library. SAEaaS has the capability to
generate, verify and handle redactable signatures for XML files. The three functionalities
are sign, redact and verify. An RSS-signed XML document protects the integrity of the
selected parts of the XML document. There are two different integrity protections for
those parts that are protected by the service:

• If a part that is fixed and can not be subsequently changed in any semantic way
without breaking/invalidating the signature. Its position (identified by XPath ex-
pression) and its content (the result of the XPath expression). Then this is called a
fixed part.
• If a part is admissible then it can be subsequently redacted while preserving a ver-

ifying signature that if valid vouches for the integrity and authenticity of origin for
the remaining parts that are signed.

The integrity protected parts are selected from the XML document by passing XPath
references, similar to the way XMLDSIG [SG07, ERS02] does it. In more detail, what
parts of the XML document that are to become protected by the signature are selected by
two lists of XPath expressions. In the following example we give the XPath statements,
which come from the eHealth pilot; they describe that the personal data related to the
diagnosis, the patients information and the doctors name from the XML can be redacted,

77 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

while the random document identifier will be protected agains any subsequent modification
in the same way a classical digital signature would protect the integrity:

• fixed: ["#xpointer(’/ehr/identifier/id’)"]
• redactable: ["#xpointer(’/ehr/anagraphic’)","#xpointer(’/ehr/diagnosis’)",
"#xpointer(’/ehr/sickLeave’)", "#xpointer(’/ehr/dischargingDoctor’)"]

Different to standard digital signatures, there are two protection classes, thus there are
two different lists of XPath expressions.

SAEaaS will return XML messages with an redactable or sanitizable signature embedded
into XML, thus the XML becomes a signed XML with an enveloped signature. This is
shown in Listing 1.

Listing 1: Example: XML representation of a redactable signature embedded into the
XML that is protected

1 <ehrSigned >

 <ehr>

3 <identifier >

 <id>fd4426bf -dcb6 -42d8 -81c6 -e7e84b4572d2 </id>

5

 </identifier >

7 <anagraphic >.....</anagraphic >

 <dischargingDoctor >.....</dischargingDoctor >

9 <diagnosis >.....</diagnosis >

 <sickLeave >.....</sickLeave >

11 </ehr>

 <signature >

13 <reference position ="1" redactable =" false" URI ="# xpointer

(’/ehr/identifier/id ’)"></reference >

 <reference position ="2" redactable ="true" URI ="# xpointer

(’/ehr/anagraphic ’)"></reference >

15 <reference position ="3" redactable ="true" URI ="# xpointer

(’/ehr/diagnosis ’)"></reference >

 <reference position ="4" redactable ="true" URI ="# xpointer

(’/ehr/dischargingDoctor ’)"></reference >

17 <signatureValue >

 724 characters Base64 encoded

19 </signatureValue >

 <publicParameterId >

21 3e8b6b5784ff468faf286f98d69036a9

 </publicParameterId >

23 <certificate >

 1376 characters Base64 encoded

25 </certificate >

 </signature >

27 <ehrSigned >

78 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Note, that after the successful execution of the redact operation the information that
some part got removed remains, i.e. the scheme does not offer cryptographic trans-
parency [BFF+09], but public non-interactive accountability [BPS13]. Please see Deliver-
able D4.4 [DDH+16] for more details. However, the content is completely removed and
can not be recovered from the remaining parts and the adjusted – still valid – signature.
This holds also true for the position inside the XML, i.e. the XPath expression is also
deleted.

4.3.2 Key Features

The main advantages of this service are:

• Increased data privacy: The patient controls the data that is forwarded. If the pa-
tient doesn’t want to share all the information of the health record, those parts can
be redacted and the third person will not get the information. You can see this
reduction of confidentiality protection requirement in the figure 25 when comparing
the needed security level for confidentiality between the storage provider in Cloud
B to that in Cloud D; the latter receives redacted data which does not contain the
information that was redacted and thus might require less protection.

• Available as SaaS: This increases the availability for the user. Further, the service is
easily accessible from everywhere and anytime. The user only needs internet access
and a mobile phone. Further, no additional software on the client devices is needed
to sign, redact or verify.

• Certificate based signatures: The web application MOXIS is used for signing elec-
tronic health records with malleable signatures. For this signature, a certificate
containing the secret signature generation key is used and securely stored in a secure
certificate store (certStore). This certStore is located on a different server and this
server is only working in the background. So, if MOXIS gets attacked the private
keys are still secure. Which means that the computed signature is a so called ad-
vanced signature and legally valid [PH11, vGPFH15, AFHP+15].

• Strong authentication: In order to guarantee that the person is really the person
he/she pretends to be a strong authentication is used. For accessing the signature
platform and the trusted cloud platform where the patient can verify signatures and
redact documents. So, the patient can be sure it was really this doctor who signed
the document and if the patient forwards the document the receiving person can be
sure that the document was only modified by the patient.

• Concurrent access: Many doctors can sign at the same time and many patients can
redact and verify documents also simultaneously.

• Decoupling of signing and redacting and verifying: The patient can collect electronic
health information that is authenticity and integrity protected by the doctors’ sig-

79 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

natures from many hospital information systems. The signatures can be verified on
original or correctly redacted documents by any third party with a trusted signature
verification key of the doctor. This removes the need to trust the storing an handling
cloud service provider for the integrity protection, any violation of integrity can be
detected by a failing signature verification. More crucial for scalability and privacy
is that the patient can, without any interaction with the doctor or the hospital infor-
mation system (HIS), carry out the redaction (non-interactive). This means many
patients can redact and verify documents without the HIS being involved.

• Decoupling of functional steps into micro-services: As the three main functionalities
require different set of cryptographic keys, we developed them as micro-services.
For example the redact service can operate without the need of even public keys.
Also the linearisation does depend on the data structure to be protected, not on the
algorithm. This makes many of the individual micro-services adaptable for use in
multiple contexts. Also they can be exchanged and developed independently10.

But the service faces also some weaknesses:

• Many parties involved: Prismacloud decided to realise this service as a set of
micro-services. Hence, until the receiving person gets the document, the document
passes many services. First the hospital proxy which picks up the XML document
from the hospital information system (HIS) and sends it to the SAE-service. The
SAE-service linearizes the document and forwards it to MOXIS. The document gets
signed and then it is send back to the SAE-service. The SAE-service Integrates the
signature value to the xml-file and sends it to the trusted cloud platform where the
user can verify, redact and forward the document to the person who should get the
document. This distribution causes a lot of risks which can be seen in the amount
of threats that were discovered by the threat modelling tool.

• Denial of Service: As so many components are involved a denial of service attack
would interrupt the whole workflow.

In Figure 26 we show a SWOT analysis of the given service.

4.3.3 Usage Model and Stakeholders

In Figure 25 we show the foreseen deployment of the different functionalities of the service
and the entities interacting with them.

4.3.4 Service Model and Interaction Dynamics

This subchapter explains the main components of this service and how they interact.

• Client: There are no special needs for the client as this service is a web application

10This worked well; SAEaaS involved the interaction of FCSR, ATOS, XiTRUST and UNI PASSAU.

80 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Cloud trusted to handle signature
 generation keys and
 generate signatures

Cloud trusted to protect confidentiality
of PARTIAL
documents,

but NOT
trusted for

integrity

SAE /sign

SAE /redact

SAE /verify

Signatory
(e.g. doctor)

Redactor
(e.g. patient)

Verifier
(e.g. accountant)

doc

docsig
Cloud trusted to protect confidentiality
of COMPLETE documents, but NOT
trusted for integrity

docsig

Storage of signed and
redacted documents

Cloud trusted to verify
integrity

docsig

Storage of redacted
documents

Cloud A

Cloud B

Cloud D

Cloud E

SAE /verify

Cloud trusted
to verify
integrity

First release of software modules for use case integration and
validation

Figure 8: Privacy enhancing IdM general diagram

2.4.3 Requirements

TODO check latest version of requirements and complete!

33 of 96

Cloud C

Reduced trusts m
ade possible

by PRISM
ACLO

UD's cryptographic support

First release of software modules for use case integration and
validation

Figure 8: Privacy enhancing IdM general diagram

2.4.3 Requirements

TODO check latest version of requirements and complete!

33 of 96

First release of software modules for use case integration and
validation

Figure 8: Privacy enhancing IdM general diagram

2.4.3 Requirements

TODO check latest version of requirements and complete!

33 of 96

First release of software modules for use case integration and
validation

Figure 8: Privacy enhancing IdM general diagram

2.4.3 Requirements

TODO check latest version of requirements and complete!

33 of 96

First release of software modules for use case integration and
validation

Figure 8: Privacy enhancing IdM general diagram

2.4.3 Requirements

TODO check latest version of requirements and complete!

33 of 96

FLEX
AUTH

FLEX
AUTH

FLEX
AUTH

FLEX
AUTH

HSM

FLEX
AUTH

Legend:

First release of software modules for use case integration and
validation

Figure 8: Privacy enhancing IdM general diagram

2.4.3 Requirements

TODO check latest version of requirements and complete!

33 of 96

PC Tool in a
Software Library

HSM
PC Tool in a
Hardware
Security Module

PRISMACLOUD
Cloud Service

Figure 25: Deployment and actors of the selective authentic exchange service

81 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Helpful
(to achieve the objective)

Harmful
(to achieve the objective)

In
te

rn
al

or
ig

in
(p

ro
du

ct
/c

om
pa

ny
at

tr
ib

ut
es

)
E

xt
er

na
l

or
ig

in
(e

nv
ir

on
m

en
t/m

ar
ke

t
at

tr
ib

ut
es

)

Certificate based signature,
Strong authentication Many parties involved

Available as SaaS,
Patient controls the

data that is forwarded
Denial of Service

Figure 26: SWOT for the selective authentic exchange service

and can easily be accessed with any internet browser such as chrome, firefox, edge.
Of course if the client does not want to entrust the correct execution of the service,
it could run locally; assuming the required keys are locally available. Note, only for
signature generation a secret key is required.

• Hospital Proxy: The hospital proxy sends Health Level Seven International (HL7)11

messages in an XML format to the SAE-service via web service.

• SAE-Service: The SAE-service takes the XML-documents and linearizes the doc-
ument so the malleable signature library is able to sign the document. After the
document has got signed, the signature value is added to the XML-file and send to
the eHealth cloud platform. The linearization of the document also happens when
the service gets the document for redaction or verification purposes.

• MOXIS: XiTrust MOXIS receives the electronic health record, or more precisely the
linearized XML data, which needs to be signed from the SAE-service. Therefore,
the signerID, the documentID, the linearized messages, the original XML and paths

11Health Level Seven International (HL7) is a not-for-profit, ANSI-accredited standards developing or-
ganization dedicated to providing a comprehensive framework and related standards for the exchange,
integration, sharing, and retrieval of electronic health information that supports clinical practice and the
management, delivery and evaluation of health services; www.hl7.org [last accessed: Jun. 2017]

82 of 145

www.hl7.org

D7.6 Guidelines and Architecture for Secure Service Composition

to the parts that are redactable are send via the SAEToMOXIS REST interface.
The XML data, which gets signed is converted into a user-friendly pdf-document
in order to visualize it to the doctor. The parts, which are redactable, are thereby
marked with borders in colour. So, the doctor can control which parts are redactable
and signs it if the document is fine. The bulk signature enables the doctor to sign
all the controlled pdfs by entering the signature password only once. For the signing
process, the malleable signature library is used and for calling the sign-function, the
private key and the linearized messages are provided as parameters.
After the messages are signed, the signature, the original XML, the certificate as well
as the documentID and the publicParameterID are send back to the SAE-service via
the MOXISToSAE REST interface. The doctor has the possibility to control the
document again and sees a visualization on the document, if the signature was com-
puted successfully. The signature time is also available and visible. The signature
visualization can be chosen by the doctor.
For the authentication of the doctor a two-factor-authentication is provided in order
to be sure that he/she is really the person he/she pretends to be. This is done
by entering the own mobile phone number plus the signature password and after a
few second a one-time password is received on this mobile phone which needs to be
entered in a second step.

In addition, the SAEToMOXIS interface provides methods, which are used to verify
the malleable signature created with MOXIS or to redact parts of the signed data.
These interfaces are handled synchronous as those functions are executed automat-
ically when the user chooses this functionality at the eHealth cloud platform.

• eHealth cloud platform: This platform provides the user with a graphical user inter-
face where the user can decide which documents he/she wants to redact or verify.
In a next step, the user has the possibility to share the document with other peo-
ple. The authentication at this platform is carried out with the same two-factor
authentication procedure as with MOXIS.

This is also depicted in the interaction diagram shown in Deliverable D7.8, which especially
focusses on the interaction between the two micro-services (SAE-Service and MOXIS).

4.3.5 Provider/Consumer Scope of Control

The deployment of the selective authentic exchange service involves the following parties:

• Cloud Consumer: The cloud consumers are the patients as well as other healthcare
employees. The cloud consumer scope of control is reduced to a minimum. The
consumer doesn’t need to install or operate any software as the consumer only needs
an internet browser to access the own health records and redact them or verify the
signature of the doctor.

• SAE Providers: These providers are running the different or all functionality of the

83 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

SAE-service and are responsible for the correct transformation from XML-documents
to linearized messages.

• Tool Provider: The tool provider is responsible for correctly calling the sign, redact
and verify functions of the malleable signature library and for the sign functional-
ity this requires the private key of the doctors. Further, the user management to
restrict access to that secret key’s usage is done by the tool provider as well. For
the verification functionality still a trusted public key of the doctor is required to be
maintained by the tool provider. Finally, the redact functionality does not require
any keys.

• Storage Providers: This are several or one IaaS provider providing the real storage
space where the unsigned, signed or redacted data will be stored.

4.3.6 Parameters

From the parameters the following four are most important:

• The userID for which the MOXIS is able to contact the natural person to authorise
the usage of the natural person’s secret signature generation key by the signature
algorithm.
• The XML document of which certain defined parts shall be protected against any

subsequent modification while some other defined parts shall be redactable by a RSS
signature.
• A list of XPath expressions that define each redactable part (for security reasons

only selection by absolute paths are allowed).
• A list of XPath expressions that define each fixed – non-redactable – part (for security

reasons only selection by absolute paths are allowed).

4.3.7 Application Development

We utilized the Microsoft Threat Modelling Tool to retrieve Figure 27. A first preliminary
examination of the threat report resulted in the following table:

STRIDE Category Original Not-Applicable Mitigated/Design Resulting

Spoofing 7 0 4 3
Tampering 3 2 0 1
Repudiation 7 0 4 3
Information Disclosure 0 0 0 0
Denial of Service 14 0 0 14
Elevation of Privilege 29 2 17 10

Total 60 4 25 31

84 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 27: Attack surface model for the selective authentic exchange service

The most threats were found within the category elevation of privilege but most of the
threats can be mitigated or are not applicable. The reason why most of them can be
mitigated is that client authentication is in place for all the web interfaces and all the
received data is validated before some code gets executed. Furthermore, a security audit
for MOXIS is performed regularly by a trusted third party.
The spoofing threats are addressed with a two-factor authentication using the mobile
phone. So, the attacker would need the mobile phone and the signature password of a
registered user of MOXIS or from the Authentication Server in order to spoof the system.
The threats, which are categorized as tampering are not applicable as the components
don’t get that much access to memory. Further, the repudiation threats can be mitigated
as all the activities are logged.
We have carefully designed the XML support of SAE-service to not need to handle any
keys. Further, the service restricts the selection of parts of the XML to absolute Xpaths
using xpointer expressions in order to be not vulnerable to known wrapping attacks on
XML signatures, like [MA05]. Hence, there is a restriction to the absolute paths, i.e.,
XPath has to start with the XML root (/).

4.4 Privacy Enhancing IDM (PIDMaaS)

4.4.1 Overview

This service offers the capability of a privacy enhanced identity management. In partic-
ular, it allows users to store their attribute credentials obtained from some entity in this
component and to realize a selective attribute disclosure functionality. Therefore, the main

85 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 28: Privacy Enhancing IdM (PIDM) overview.

goal of this service is the preserving of users’ privacy. That is, it offers client applications
the possibility to manage their pool of users in a privacy-preserving manner. Operations
needing authorization and susceptible of revealing sensible information about the users
can be secured by setting a group-based permission system where individuals provide an
anonymous proof of their inclusion in a group (which may be linked to a certain set of
permissions), which is used by the application to authorize the action.

The Privacy Enhancing IdM service (PIDMaaS) is built on top of the Flexible Authenti-
cation with Selective Disclosure Tool. Since the service involves the generation of secrets
that are bound to individual users, the complete service is provided in the form of two
modules:

• Cloud service: offers application-wide functionalities, including:
– Group management: users of the platform can manage their groups.
– User management: users of the platform can manage their users and their

association to groups.
– Signature management: includes functionalities for verifying, linking or opening

signatures.
• Cordova plugin for Android apps: offers those functionalities related to the opera-

tions that involve the secret keys of the individual users, and therefore need to be
computed on their personal devices:

– Signature management: includes functionalities for creating personal keys, sign-
ing documents and associating a user to a group (in interaction with the cloud
service).

4.4.2 Key Features

In Figure 29 we show a SWOT analysis of the given service. As can be seen in figure 29,
the use of Privacy Enhancing IdM service and its location in the cloud have the following

86 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Helpful
(to achieve the objective)

Harmful
(to achieve the objective)

In
te

rn
al

or
ig

in
(p

ro
du

ct
/c

om
pa

ny
at

tr
ib

ut
es

)
E

xt
er

na
l

or
ig

in
(e

nv
ir

on
m

en
t/m

ar
ke

t
at

tr
ib

ut
es

)

Support multiple access
Increased data privacy

Key-less operation
Malicious client detection

Slower local processing

High compatibility
High processing

Elevation of privileges
Repudiation
Tampering

Figure 29: SWOT analysis of Privacy Enhancing IdM Service (PIDMaaS).

advantages:

• User anonymity: Registered users can obtain a secret token which allows them to
authenticate to the service as a member of some group of authorized users without
revealing their identity. This enables applications to enforce authorization without
violating the users’ privacy.

• Unlinkability of interactions: The service allows users to authenticate in a way
that different authentications of the same user cannot be linked together. This
prevents an application from tracing users.

• Privacy-friendly misuse detection: The service when given a special detection
information can detect whether a user provides a clone of the secret token to an-
other users to authenticate at the same time. This can be performed in a privacy-
preserving way by the service, i.e., without the need to identify the respective user.

• Reidentification of misbehavers: The service when given a special re-ident-
ification information can re-identify misbehaving users. Thus, misbehaving users
can be penalized.

In the opposite way, the main weak is the Slower local processing, due the cordova plugin
is not native. As a result, the processing is slower than the case of native code.

The threats has been detected by using the Microsoft Threat Modelling Tool:

87 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

• Elevation of privileges: Cross-site request forgery (CSRF or XSRF) is a type of
attack in which an attacker forces a user’s browser to make a forged request to a
vulnerable site by exploiting an existing trust relationship between the browser and
the vulnerable web site. In a simple scenario, a user is logged in to web site A
using a cookie as a credential. The other browses to web site B. Web site B returns
a page with a hidden form that posts to web site A. Since the browser will carry
the user’s cookie to web site A, web site B now can take any action on web site A,
for example, adding an admin to an account. The attack can be used to exploit
any requests that the browser automatically authenticates, e.g. by session cookie,
integrated authentication, IP whitelisting, . . . The attack can be carried out in many
ways such as by luring the victim to a site under control of the attacker, getting the
user to click a link in a phishing email, or hacking a reputable web site that the
victim will visit. The issue can only be resolved on the server side by requiring
that all authenticated state-changing requests include an additional piece of secret
payload (canary or CSRF token) which is known only to the legitimate web site and
the browser and which is protected in transit through SSL/TLS. See the Forgery
Protection property on the flow stencil for a list of mitigations.

• Repudiation: A repudiation attack happens when an application or system does not
adopt controls to properly track and log users’ actions, thus permitting malicious
manipulation or forging the identification of new actions. This attack can be used to
change the authoring information of actions executed by a malicious user in order to
log wrong data to log files. Its usage can be extended to general data manipulation
in the name of others, in a similar manner as spoofing mail messages. If this attack
takes place, the data stored on log files can be considered invalid or misleading.

• Tampering: Attackers who can send a series of packets or messages may be able to
overlap data. For example, packet 1 may be 100 bytes starting at offset 0. Packet 2
may be 100 bytes starting at offset 25. Packet 2 will overwrite 75 bytes of packet 1.

4.4.3 Usage Model and Stakeholders

Due the service is composed of two modules, besides a provider and a customer, we have
considered one extra provider belonging to it. Therefore, three actors take part in the
service:

• The Cloud Customer, or client, is the part that generates users’ keys (public and
private), groups joins and signatures.
• The Privacy Enhancing IdM Provider runs the Privacy Enhancing IdM service and

offers it to Cloud Customers. It manages the execution of the Privacy Enhancing
IdM software. It is necessary that a trust relation exists between the Cloud Customer
and the Privacy Enhancing IdM Provider.
• The Cloud Provider manages the cloud infrastructure where the applications of the

Cloud Customers are deployed. The Privacy Enhancing IdM service manages groups
and users registration and verifies signatures.

88 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 30: Diagram of the PIDMaaS elements.

4.4.4 Service Model and Interaction Dynamics

In this section, we describe the main components of the service and how they are related.
This can be shown on picture 30.

In the client side, an android lib is running. This lib composes the cloud customer and
its main functionalities are:

• User key generation
• Group joining
• Sign

That is, in the mobile part of the service, users can create public and private keys, ask
for a group joining and sign operations. Apart of the own user keys, this side will create
public and private keys related to each group that an user joins to.

In the provider side, the Cloud service is oriented to group management. Its functionalities
are:

• Application management
• Group management
• User registration
• Verification:

– Verification of user’s signature (Verification).
– Identification of signatures delivered by same user (Link).
– Identification of signing user (Open).

4.4.5 Provider/Consumer Scope of Control

The model of this service is PaaS and the service is deployed in a public cloud. In the
Provider/Consumer scope of control the actors are the following:

• The Cloud consumer has the control over the user’s key store, due it generates public
and private keys related to user and groups which user belongs to.
• The Cloud provider manages the cloud infrastructure where the applications of the

Cloud Customers are deployed.

89 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 31: Attack surface model for the Privacy enhancing IDM service.

4.4.6 Parameters

The PIDM service will consider two parameters:

• The current location of the user.
• The proof of permission to park in the area.

4.4.7 Application Development

Attack Surface Analysis

The PIDM service has these two interaction points to the Cloud Customers:

• The PIDM frontend is a set of webservices that allows user execute main operations
using his/her proof of credentials.
• The PIDM REST API provides the part of the service related to the user’s keys

and signatures.

The rest of the interaction among components in the service are internal, so they are
under control of the environment. The figure 31 represents the attack surface model for
the service

Gathering threats with STRIDE

We utilized the Microsoft Threat Modelling Tool to arrive at Figure 31. The generated
graph was the base for automatically generated threats—a first preliminary examination

90 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

of those resulted in the following table:

STRIDE Category Original Not-Applicable Mitigated/Design Resulting

Denial of Service 9 7 2 0
Elevation of Privilege 12 4 6 2
Information Disclosure 5 3 2 0
Repudiation 3 0 0 3
Spoofing 4 4 0 0
Tampering 12 7 4 1

Total 45 25 12 8

The complete list of threats can be found in the appendix in Section B.4.

Analyzing and Mitigating remaining Threats

Summarizing, main threats that need further investigation deal with:

• Elevation of privileges: the implementation of the service needs to be tested to
confirm the non-existence of problems related to XSS and remotely execution of
code .
• Repudiation: proper auditing mechanisms are advised to be included in the service,

in order to detect unfair customers.
• Tampering: it is necessary to check posibility of collision attacks.

4.5 Verifiable Statistics (VSaaS)

4.5.1 Overview

This chapter is devoted to detail the main functionalities provided by the Service Cloud
that provides the Verifiable Statistics functionality. These functionalities are based on a
set of state of the art cryptographic primitives that allow the delegation of computations
on outsourced data to third parties so that the data owner and/or other third parties can
verify that the outcome has been computed correctly. Nevertheless, the details regarding
the primitives used for the development of this service cloud can be consulted in detail
within the deliverable D5.8 Overview of verifiable computing techniques providing private
and public verification.

The idea behind this service is two provide the end user with the necessary resources and
functionalities that permit the checking of the veracity and authenticity of computed data.
Describing this process from the end to the beginning the computed data will need to be
verified and in order to do so the data will need some associated metadata to allow the
verification or, in other words, the computed data must be signed. In order to produce
this signed computed data, it is necessary to have original data electronically signed in
the first place. Therefore, to enable this service a public key infrastructure is also needed.

91 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

4.5.2 Key Features

As stated in the previous section, the key feature of this service it to give users access to
trusted computations in the cloud by leveraging verifiable computing. This enables out-
sourcing of computations to less trusted third parties while still providing strong guarantees
about the integrity and authenticity of computation outcomes on user data.

The verifiable computing concept is a relatively young concept but in its short life has
made huge academic improvements, especially in the last few years. However, at the
moment of applying these new improvements to a real environment there is a constraint
to take into consideration: the computational overhead of the server which performs the
computation.

Hence the main research efforts devoted within PrismaCloud have been applied to reduce
and minimize this constraint but always preserving the integrity and confidentiality of the
data. In this sense new advances in fields like FHE, pairings, multi-linear maps, circuit
generation, or garbled circuits will each benefit the state of the art verifiable computing.
Note that so far there is only one scheme where both the time required for generation and
verification is O(T) with T as the time required to compute the function.

In addition, privacy has been one of the main aims in the research; PrismaCloud has
searched to find the best suitable combination of verifiable computing schemes which pre-
serve privacy and secure against adaptive adversaries. However, there are no instantiations
so far that allow building a construction that at the same time is secure in the strong ad-
versary model and provides efficiency and privacy. For many applications, such a primitive
would be very valuable. Thus, developing a corresponding solution is an interesting task
for future work. Further information regarding the particularities of the different algo-
rithms and schemata selected can be found within D5.8 Overview of verifiable computing
techniques providing private and public verification.

4.5.3 Usage model and stakeholders

Figure 32 shows an architecture diagram of the service. It shows the different actors and
stakeholders involved in the use of the service.

It is worth mentioning that the functionality provided by the Service Cloud can be classified
into trusted services (in green) or non-trusted services (in red). Hence the details are as
follows:

• The non-trusted cloud provider: it allows the end user to compute the data passed
as a parameter. This data must be already signed with the proper verification
code. As a result of this operation, the service will respond with signed computed
information (the compute data plus the verification computing information) to allow
the verification of the data later on. It is worth mentioning that this operation is
performed on the fly, therefore this operation doesn’t need to store any information
within the cloud.
• The trusted cloud provider: the main functionality provided by this service is the

92 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 32: Verifiable Statistics Service (VSaaS) in the Service Cloud Architecture.

93 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

verification of the data. For that propose the service takes as a parameter the signed
computed data and will answer with “true” if the data is valid and “false” if it is
not.
• The producer of the data: it will not be part of the service cloud system itself as it

requires the use of public and private keys that must be in possession of the owner
and therefore must be performed within a trusted environment. However, the service
will provide a tool package that will allow the producer to work locally where all
the necessary operations are provided.

4.5.4 Service Model and Interaction Dynamics

As can be seen in figure 32, shown in the previous section, the iterations within the system
is as follows:

1. Create Verify Computing Pair of keys: as a previous step the producer of the data
needs to produce a pair of keys with a specific schema, using the package tool pro-
vided by the service

2. Producer Sign Data: using the pair of keys generated in the previous step and signed
by a certificate authority (who will assure the identity of the user), the producer of
the data can sign the data using the tool package provided by the service

3. Send a set of Signed Data: The producer of the data can then send a set of the
signed data to a third party to outsource the computation of the data.

4. Producer Compute a set of Data: the entity in charge of the computation of the data
can use the remote cloud service in order to compute the set of signed data.

5. The server return the computed data: the service, as a result of the operation, will
respond with signed computed data.

6. Send the computed data: Once the data is computed, the entity responsible for the
computation can send the signed computed data to a third entity.

7. The consumer verifies the data: Once the consumer of the data has the signed
computed data in his/her possession, he/she can verify the integrity and validity of
it at any time. In order to do so, the consumer can use the service available, who
will answer with a “true” if the data is valid and with a “false” if it is not.

4.5.5 Provider/Consumer Scope of Control

It is worth mentioning that all the operations provided by the cloud are performed on
the fly. In other words, the cloud will never make a persistent storage of the information
computed or verified. In addition, the services will be agnostic regarding the treatment of
the information. From the point of view of the service itself, there won’t be any difference
between sensitive or non-sensitive information as it operates with the information as a
black box without looking at it. Another important characteristic of the service is that it
will be used on demand and therefore it won’t be necessary to implement any real time
(near to real time) access. The only possible damage of a break down of the service will
be the company reputation or images, as it won’t carry on any loss of data. Hence the

94 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

liabilities associated are very limited. In any case, with regards to the Provider/Consumer
scope, the description of the different actors involved in the service is as follows:

• Cloud Consumer: the end user of the services will not need any specific control or
management tool of the service cloud. He/She can use the services, on demand,
using the Graphical user Interface provided by the cloud or using the REST API if
necessary.
• Cloud Provider: As mentioned before, the stopping or failing of the service won’t

have any associated loss or wear and tear of the data. Nevertheless, in order to
maintain the company’s reputation, the cloud provider should integrate the resources
necessary to monitor the status of the service and to ensure that it will be in service.

4.5.6 Application Development

This section is devoted to detail the result of the application of the STRIDE analysis
performed with the Microsoft Threat Modeling Tool. The main aim of this analysis is to
have a clear idea of the main threats that the particular system can be exposed to followed
by the identification of the different threats which security controls can be used to palliate
or minimize them.

Attack Surface Analysis

In the particular case of the VSaaS two different environments can be defined: local and
remote. The local environment is considered as out of the system for this particular
case, therefore this analysis will be focused on remote access. On the other hand, it is
worth highlighting that, as the results from threat modeling show, there are two different
environments that must be trusted: the environment running the sign operation and the
other for the verify.

As shown in the figure 33, the weaker part of the system will be in the communication
with a non-trusted environment and so that is where our analysis is more incisive. In this
particular case the focus of the analysis has been done in the computed operation (signed
data) as shown in 34.

Gathering Threats with STRIDE

As described in the previous section the weaker part of the system and therefore the
principal part of the STRIDE analysis is the computation call. This section is devoted
to detail all the threats found for this particular case and, in case of being necessary, to
propose some possible controls.

95 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 33: Attack surface model for the verify computing service.

Figure 34: Interaction: compute(Signed Data):signed compute data

96 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

All major findings are summarized in the following tables:

Spoofing the Browser Client Process State: Mitigate

Category Spoofing

Description
Browser Client may be spoofed by an attacker and this may lead to
unauthorized access to Compute - Web Service. Consider using a stan-
dard authentication mechanism to identify the source process

Justification Use of encrypted communications (HTTPS), will minimize the risk as-
sociated to this threat

Browser Client Process Memory Tampered State: Not Applicable

Category Tampering

Description

If a Browser Client is given access to memory, such as shared memory or
pointers, or is given the ability to control what the Compute - Web Ser-
vice executes (for example, passing back a function pointer.), then the
Browser Client can tamper with the Compute - Web Service. Consider
if the function could work with less access to memory, such as passing
data rather than pointers. Copy in data provided, and then validate it.

Justification
It is not applicable as in this particular case, any information resulting
from the different operations will not be shown in the browser, will be
downloaded directly to a file

Potential Data Repudiation by Web Service State: Not Applicable

Category Repudiation

Description
Compute - Web Service claims that it did not receive data from a source
outside the trust boundary. Consider using logging or auditing to record
the source, time, and summary of the received data

Justification As the use of these services are not associated with personal use it won’t
be necessary to audit the operations

Potential Process Crash or Stop for Web Service State: Mitigate

Category Denial Of Service

Description Compute - Web Service crashes, halts, stops or runs slowly; in all cases
violating an availability metric

Justification A contingency plan with the specific countermeasures has been specified

Data Flow Compute Signed Data Is Potentially Inter-
rupted

State: Mitigate

Category Denial Of Service

Description An external agent interrupts data flowing across a trust boundary in
either direction

Justification The encrypted communication (HTTPS) of the operations will minimize
the risk associated to this threat.

97 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Web Service May be Subject to Elevation of Privilege
Using Remote Code Execution

State: Mitigate

Category Elevation Of Privilege

Description Browser Client may be able to remotely execute code for Compute -
Web Service

Justification This service will not be based on an Authorization Service; therefore, it
will be not applicable

Elevation by Changing the Execution Flow in Web Ser-
vice

State: Not Applicable

Category Elevation Of Privilege

Description
An attacker may pass data into Compute - Web Service in order to
change the flow of program execution within Compute - Web Service to
the attacker’s choosing

Justification This service will not be based on an Authorization Service; therefore, it
will be not applicable

Analysing and Mitigating Remaining Threats

There are no significant remaining threats as seen as a result of the STRIDE analysis
detailed above.

4.6 Infrastructure Auditing (IAaaS)

4.6.1 Overview

The infrastructure auditing service (IA or IAaaS) offers the capability for cloud providers
to certify their infrastructure and to prove properties of their infrastructure to tenants.
In this section, we initially introduce key features, explain the proposed service view,
discuss functional requirements and finally focus upon the security impact of our use-case
prototype.

The main idea of the infrastructure auditing service is to provide a way for cloud providers
to request an auditor to sign their cloud infrastructure and prove policy predicates to
tenants without disclosing the layout of their infrastructures. In the e-government use
case it is required that the physical servers or virtual machines are hosted in separated
locations. This requirement is fulfilled in our prototype by using a geo-location separation
service which offers an interface for the tenant to ask the cloud provider, for instance, if
the virtual machines are in different locations.

The key design concept was to separate the main functionalities into smaller self reliant
services instead of having a monolithic infrastructure auditing service. This way the
responsibilities of each service are clearer and we can tune the configuration of each of the

98 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

services according to their needs. Therefore, we are decomposing the service into three
different services following the micro-service paradigm.

4.6.2 Key Features

In Figure 35 we show a SWOT analysis of the Infrastructure Auditing service. According
to the SWOT analysis the service has the following advantages:

• Reduction of costs: Using the infrastructure auditing service enables auditors to
automate the certification of cloud infrastructures. By making sure that SLAs and
especially security objectives are fulfilled, tenants can reduce their costs by utilizing
cloud infrastructures and deploying their services to the cloud resulting in a reduction
of their costs.
• Privacy: The service allows a cloud provider to prove properties on a cloud topology

to a tenant without disclosing any information apart from that it is fulfilled or not.
Thus, the blueprint of the provider’s infrastructure is not disclosed to the tenant.
• Trust: The service can prove properties to tenants and tenants can verify the proofs.

This way tenants are assured that policy predicates such as geo-location separation
are fulfilled. As a result the tenants’ trust to the cloud provider increases.

The IA service has a number of disadvantages according to the SWOT analysis. Threats
and weaknesses have been analyzed with Microsoft Threat Modelling Tool, whose mitiga-
tion is treated in section 4.6.7. The disadvantages for the service are the following:

• Performance degradation: Resource consumption attacks can be hard to deal
with, because the way an attacker request web resources is like that of any legitimate
client, and the only differentiating attribute is their intention.
• Elevation of privileges: Cross-site request forgery (CSRF or XSRF) is a type

of attack in which an attacker forces a user’s browser to make a forged request to
a vulnerable site by exploiting an existing trust relationship between the browser
and the vulnerable web site. In a simple scenario, a user is logged in to web site
A using a cookie as a credential. The other browses to web site B. Web site B
returns a page with a hidden form that posts to web site A. Since the browser will
carry the user’s cookie to web site A, web site B now can take any action on web
site A, for example, adding an admin to an account. The attack can be used to
exploit any requests that the browser automatically authenticates, e.g. by session
cookie, integrated authentication, IP whitelisting, . . . The attack can be carried out
in many ways such as by luring the victim to a site under control of the attacker,
getting the user to click a link in a phishing email, or hacking a reputable web site
that the victim will visit. The issue can only be resolved on the server side by
requiring that all authenticated state-changing requests include an additional piece
of secret payload (canary or CSRF token) which is known only to the legitimate web
site and the browser and which is protected in transit through SSL/TLS.
• Repudiation: A repudiation attack happens when an application or system does

not adopt controls to properly track and log users’ actions, thus permitting malicious
manipulation or forging the identification of new actions. This attack can be used to

99 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Helpful
(to achieve the objective)

Harmful
(to achieve the objective)

In
te

rn
al

or
ig

in
(p

ro
du

ct
/c

om
pa

ny
at

tr
ib

ut
es

)
E

xt
er

na
l

or
ig

in
(e

nv
ir

on
m

en
t/m

ar
ke

t
at

tr
ib

ut
es

)

Reduction of costs
Increased privacy

Increased trust
Performance degradation

Offered as IaaS
Elevation of privileges

Repudiation
Tampering

Figure 35: SWOT analysis of Infrastructure Auditing Service.

change the authoring information of actions executed by a malicious user in order to
log wrong data to log files. Its usage can be extended to general data manipulation
in the name of others, in a similar manner as spoofing mail messages. If this attack
takes place, the data stored on log files can be considered invalid or misleading.
Regarding the IA service this attack can be realized when the cloud provider is not
the one that has sent the graph topology to the auditor for certification. This means
that the auditor will not sign the correct graph topology.

4.6.3 Usage Model and Stakeholders

The IA Service has three main stakeholders:

• Auditor: This stakeholder defines the graph encoding that is going to be used
during certification of the cloud infrastructure.
• Cloud Provider: The Provider requests from the auditor to sign the topology and

to provide him with a topology certificate.
• Tenant: This user requests from the provider to prove that a policy predicate is

fulfilled. Then the tenant verifies the result of the proof process.

100 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 36: Interaction dynamics for infrastructure auditing service

101 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

4.6.4 Service Model and Interaction Dynamics

The high level component shown in Figure 36 shows main component and the main services
that are interacting in the system

• Audit-Profiles Management Service: The goal of this service is to provide a REST
interface to auditors that can specify and certify audit profiles. Upon obtaining a
graph representation G using the REST API the service will issue a partial graph
signature. The service comprises of 4 components:

– The audit profile store provides a REST API to store audit profiles for the
auditors.

– The logger is an interface that the service can use for logging information re-
garding the correct execution of operations.

– The TOPOCERT module is responsible for the setup of the certification envi-
ronment for the topology certification, which includes the certification of the
topology language. Computes a partial graph signature which is handed over
to the provider.

– The Graph Signature library provides the signer low-level role that is responsible
for the low-level key setup, for certifying and encoding scheme and to sign
graphs.

• Infrastructure Auditing Management Service: providers use this service to search
and select audit profiles according to their requirements. The service also provides a
REST API for providers that want to sign their infrastructure and provide a graph
representation to auditors. It comprises of the same 4 components as the previous
service. We only consider their differences for the discussion of this service.

– The audit profile store offers a REST API to initiate the issuing protocol with
the auditor and select an appropriate audit-profile offered by the auditor or
import an audit-profile.

– The logger provides an interface that the service can use for logging information
regarding the correct execution of operations for the providers.

– The TOPOCERT Tool module provides the functionality for the high level
recipient role which offers a topology signature.

– The Graph Signature library provides the recipient low-level role that is respon-
sible for creating graph commitments and completing the partial signature sent
by the signer with his randomness R.

• The GeoSeparation Service offers a REST API for providers to list policy predicates
and tenants to issue queries about the topology that the provider offers. This services
uses the same components as the previous services. However, each of the component
uses its appropriate facet for this service. We discuss the differences that exist with
the 4 components:

– The audit profiles store uses a REST API for storing audit profiles for the
provider to retrieve its information used for the zero knowledge proof of knowl-
edge.

– The logger provides an interface that is used to log the verification result.
– The TOPOCERT module enters the prover role and draws on the graph signa-

ture on the topology and the graph representation to create a zero-knowledge

102 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 37: Scope of control for Infrastructure Auditing service deployment

proof of knowledge on policy predicate P using the low-level graph signature
library.

– The Graph Signature library computes zero-knowledge proofs of knowledge with
a policy predicate P on graph signatures.

4.6.5 Provider/Consumer Scope of Control

The deployment of the Infrastructure Auditing service consists of deploying three different
services. The Cloud Provider is responsible for deployment and maintenance of the ser-
vices. The Cloud Consumer is able to configure the services according to its requirements
and make use of the available REST API that each service provides. The scope of control
in the software stack is displayed in Figure 37 and discussed in the following:

• Cloud Consumer : the client is only allowed to perform the operations required to
make the service work following the particular requirements for each client’s role.
For instance a client with an Auditor role can only access the API of the Audit-
Profiles Management service. The same method is used for the Provider and Tenant
roles.
• Cloud Provider : the Cloud Provider is responsible for hosting and operating the

Infrastructure Auditing service. The service needs to be deployed in cloud infras-
tructure that has public access from the Internet.

103 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

4.6.6 Parameters

There are no special parameters available.

4.6.7 Application Development

This section discusses the result of the STRIDE analysis performed with the Microsoft
Threat Modelling Tool. The aim of this analysis is to identify the threats that the in-
frastructure auditing service can be exposed to and the security controls that mitigate or
minimize them.

Attack Surface Analysis In the particular case of the Infrastructure Auditing Service,
there are three services that enable the topological infrastructure certification and verifi-
cation. The Audit-Profiles Management service provides auditors the ability to manage
and certify audit profiles alongside signing graph topologies. The auditor user manages
the services using a UI where only an authorized user can make adjustments to the ser-
vice. Both the provider and tenant users use the same approach. The users manage their
respective services using a UI where only authenticated users can make changes to the
configuration of the service.

There are three interaction points for an auditor, provider, or tenant user that constitute
the network attack surface:

1. The Audit-Profiles Management service is a set of webservices and a UI that allows
an auditor to setup the required details for issuing and certifying audit profiles and
signing graph representations.

2. The Infrastructure Audit Management service is a set of webservices and a UI that
allows a provider to search for audit profiles, select the one that is required and
initiate the issue protocol to sign a graph representation.

3. The GeoSeparation service is a set of webservices and a UI that allows a tenant to
ask the provider to prove a particular policy predicate P. The service also offers the
tenant a way to log the verification result.

Gathering Threats with STRIDE

We utilized the Microsoft Threat Modelling Tool to arrive at Figure 38. The generated
graph was the base for automatically generated threats—a first preliminary examination
of those resulted in the following table:

104 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 38: Attack surface model for the infrastructure auditing service.

105 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

STRIDE Category Original Not-Applicable Mitigated/Design Resulting

Spoofing 6 3 0 3
Tampering 13 0 3 10
Repudiation 3 0 0 3
Information Disclosure 9 0 0 9
Denial of Service 12 3 0 9
Elevation of Privilege 17 3 3 11

Total 60 9 6 45

Analyzing and Mitigating remaining Threats

There are two main types of threats that require further investigation:

• Performance degradation: the infrastructure auditing service requires a way to mit-
igate excessive resource consumption of the service. One possible solution for per-
formance degradation is to deploy an API gateway or a Web Application Firewall
(WAF) to limit API usage both for the absolute number of APIs calls and the rate of
API calls. This approach reduces massive API requests that cause denial of services,
mitigates brute-force attacks and mitigates misuses of the services. Monitoring API
usage and sending alerts when the service is overloaded with requests or the API
call patterns seem suspicious.
• Repudiation: an auditing mechanism should be included in the infrastructure audit-

ing service to detect that service requests originate from a legitimate entity. This
mechanism provides an audit trail during the service operation.

4.7 Encryption Proxy (EPaaS)

4.7.1 Overview

The main objective of the Encryption Proxy service is allowing organizations to move
existing server applications to the cloud, in a way that all sensitive data reaches the cloud
in a encrypted way, and with no need of modifications on the original software.

In order to achieve this objective, the Encryption Proxy service offers a configurable re-
verse proxy which is capable of analyzing the traffic transversing it (most common internet
protocols have been considered) and encrypting or decrypting the sensitive fields as nec-
essary.

The Encryption Proxy service is provided in the form of a cloud service, allowing dif-
ferent organizations to register themselves and configure the details of their applications
APIs, information which is used to automatically create an endpoint for protecting the
corresponding application by encrypting and decrypting its traffic on-the-fly.

106 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 39: Encryption Proxy (EP) overview.

4.7.2 Key Features

In Figure 40 we show a SWOT analysis of the given service.

As it can be seen in the SWOT analysis, the major advantages of the service are:

• Reduction of costs. The service allows organizations to take benefit of moving
their existing applications to the cloud (costs outsourcing, increased availability,
cloud elasticity to adapt to organization requirements...) without investing in re-
designs

• Increased privacy. Organizations willing to move their applications to public
clouds can do it in a way that the sensitive data remains hidden to the cloud provider
or other any third party

• Offered as SaaS. Organizations can register themselves and configure the service
accordingly to their requirements, no deployment of extra software is needed by their
side

However, some disadvantages appears for the service. Threats and weaks have been ana-
lyzed with Microsoft Threat Modelling Tool, whose mitigation is treated in section 4.7.7.
These disadvantages are:

• Performance degradation: Resource consumption attacks can be hard to deal
with, because the way an attacker request web resources is like that of any legitimate
client, and the only differentiating attribute is their intention.
• Elevation of privileges: Cross-site request forgery (CSRF or XSRF) is a type

of attack in which an attacker forces a user’s browser to make a forged request to
a vulnerable site by exploiting an existing trust relationship between the browser
and the vulnerable web site. In a simple scenario, a user is logged in to web site
A using a cookie as a credential. The other browses to web site B. Web site B
returns a page with a hidden form that posts to web site A. Since the browser will
carry the user’s cookie to web site A, web site B now can take any action on web
site A, for example, adding an admin to an account. The attack can be used to
exploit any requests that the browser automatically authenticates, e.g. by session
cookie, integrated authentication, IP whitelisting, . . . The attack can be carried out
in many ways such as by luring the victim to a site under control of the attacker,

107 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Helpful
(to achieve the objective)

Harmful
(to achieve the objective)

In
te

rn
al

or
ig

in
(p

ro
du

ct
/c

om
pa

ny
at

tr
ib

ut
es

)
E

xt
er

na
l

or
ig

in
(e

nv
ir

on
m

en
t/m

ar
ke

t
at

tr
ib

ut
es

)

Reduction of costs
Increased privacy Performance degradation

Offered as SaaS
Elevation of privileges

Repudiation

Figure 40: SWOT analysis of Encryption Proxy Service.

getting the user to click a link in a phishing email, or hacking a reputable web site
that the victim will visit. The issue can only be resolved on the server side by
requiring that all authenticated state-changing requests include an additional piece
of secret payload (canary or CSRF token) which is known only to the legitimate web
site and the browser and which is protected in transit through SSL/TLS. See the
Forgery Protection property on the flow stencil for a list of mitigations
• Repudiation: A repudiation attack happens when an application or system does

not adopt controls to properly track and log users’ actions, thus permitting malicious
manipulation or forging the identification of new actions. This attack can be used to
change the authoring information of actions executed by a malicious user in order to
log wrong data to log files. Its usage can be extended to general data manipulation
in the name of others, in a similar manner as spoofing mail messages. If this attack
takes place, the data stored on log files can be considered invalid or misleading.

4.7.3 Usage Model and Stakeholders

As remarked in Figure 39, execution of the service logic is performed in the central point
that needs to be trusted, since encryption/decryption of sensitive fields takes place there.
Encryption Proxy service needs therefore to be offered by a trusted provider entity. Three
different classes of stakeholders are involved:

108 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

• The Cloud Customer, or client, is the organization that moves the application to be
protected to the cloud. He is able to benefit from all the features provided by the
cloud, while protecting sensitive data without managing the complex details that it
entails.
• The Secure Proxy Provider runs the Secure Proxy service and offers it to Cloud

Customers. It manages the execution of the Secure Proxy software, which in fact
means handling the encryption keys of the different cloud customers. It is therefore
necessary that a trust relation exists between the Cloud Customer and the Secure
Proxy Provider.
• The Cloud Provider manages the cloud infrastructure where the applications of the

Cloud Customers are deployed. The Secure Proxy service allows Cloud Customers
to use this infrastructure without a existing trust relation with the Cloud Provider,
since sensitive data reaches this infrastructure in a encrypted way.

4.7.4 Service Model and Interaction Dynamics

The high level component diagram shown in Figure 41 shows the main concept plus re-
quired software components which are interacting in the system:

• Client: This is the client-side of the customer application.
• Server: This is the server-side of the customer application, which has been moved

to external infrastructure offered by a cloud provider.
• Encryption proxy service: This is the main component of the system, which offers

different endpoints (to be used by different applications) accordingly to the registered
organizations - Cloud Customers - and the details provided about their applications.
The service comprises two main components: the Proxy and Protocol Analyzer and
the Encryption/Decryption service.

– The Proxy and Protocol Analyzer receives the messages being exchanged be-
tween client and server applications, analyzing them, extracting the sensitive
fields and changing those with their corresponding encrypted or decrypted ver-
sion (depending on the direction of the communication).

– The Encryption/Decryption service is the component which actually performs
the Format and Order Preserving Encryption of the sensitive fields identified
by the Proxy and Protocol Analyzer.

4.7.5 Provider/Consumer Scope of Control

The deployment of the Encryption Proxy service is as usual for SaaS software, where the
Secure Proxy Provider is responsible for deployment and maintenance of the service, while
the Cloud Customer is able to set-up the service accordingly to its needs, and make use
of it. The scope of control in the software stack is shown in Figure 42 and discussed in
the following.

• Cloud Consumer: cloud consumer is only allowed to perform those set-up operations
needed to make the service work with the particularities of the application to be

109 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Trusted environment

Encryption Proxy Service

Client 1

Client 2

Client n

Proxy & Protocol analyzer

Encryption/Decryption service

Server 1

Server 2

Server n

Endpoint n

Endpoint 2

Endpoint 1

Figure 41: Interaction dynamics for encryption proxy service.

Hardware

OS / Storage

Middleware
(Docker)

Application

Proxy and
Protocol analyzer

Encryption
service

Admin Control
Limited Control No controlTotal control

Application API
definition

Sensitive fields
identification

Encryption formats

Total Control

Total Control

Legend:

Trusted CSP C
lo

ud
 C

on
su

m
er

(C

lie
nt

)

Figure 42: Scope of control encryption proxy service deployment.

110 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

protected. This mainly has to do with the specification of the API calls and sensitive
fields to be protected, and the definition of the formats of those fields that will be
used to perform the encryption and decryption.
• Encryption Proxy Provider: The Encryption Proxy provider is responsible for host-

ing and operating the Prismacloud Encryption Proxy solution. The service needs
to be deployed in a compatible infrastructure with public access from the internet.

4.7.6 Parameters

• Proxy and protocol analyzer
– Target endpoint: the actual endpoint of the server side of the protected appli-

cation
– Application API details: in order to perform its work, the protocol analyzer

needs to know which particular messages of the protocol contain sensitive fields,
and the identification of those.

• Encryption and decryption service
– Sensitive fields format: the advantage of the Format and Order Preserving

Encryption performed by the Encryption Proxy service is that it allows the
protected application to remain unchanged, since the produced encrypted data
type of each sensitive field is fully compatible with the one expected. This for-
mats are defined by the Cloud Consumer, and are particular for its application.

4.7.7 Application Development

Attack Surface Analysis

The Encryption Proxy service mainly 2 different interaction points to the Cloud Cus-
tomers:

• The Encryption Proxy frontend is a set of webservices and a UI allowing customer
registration and set-up of the required details for the proxy to properly protect an
application.
• The Proxy and Protocol Analyzer provides an endpoint that proxies the traffic be-

tween the client-side and server-side parts of the protected application.

All other interactions of the service are between internal components of it, and therefore
kept under the control of the trusted environment. Figure 43 summarizes our potential
attack surface.

Gathering threats with STRIDE

We utilized the Microsoft Threat Modelling Tool to arrive at Figure 43. The generated
graph was the base for automatically generated threats—a first preliminary examination
of those resulted in the following table:

111 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 43: Attack surface model for the encryption proxy service.

STRIDE Category Original Not-Applicable Mitigated/Design Resulting

Spoofing 4 3 1 0
Tampering 2 1 1 0
Repudiation 2 0 0 2
Information Disclosure 2 0 2 0
Denial of Service 6 2 0 4
Elevation of Privilege 9 2 2 5

Total 25 8 6 11

The complete list of threats can be found in the appendix in Section B.3.

Analyzing and Mitigating remaining Threats

Summarizing, main threats that need further investigation deal with:

• Performance degradation: control mechanisms for monitoring and dealing with ex-
cessive resource consumption of the service need to be put in place.
• Elevation of privileges: the implementation of the service needs to be tested to

confirm the non-existence of usual web-based applications threats.
• Repudiation: proper auditing mechanisms are advised to be included in the service,

in order to detect unfair customers.

112 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

4.8 Big Data Anonymization (BDAaaS)

4.8.1 Overview

The Big Data Anonymization service (BDAaaS) is motivated by our eHealth use case
and is designed to support the anonymization of large data sets – those data sets that
do not fit in main memory. The service allows for the upload and download of huge files
(Gigabytes), and supports the anonymization process by employing Spark – a general
engine for large-scale data processing – to distribute and parallelize the anonymization
algorithms.

The service and has been designed to seamlessly support both smaller sized data sets as
well as larger data sets. In the rest of this section we will show that the service supports
advanced anonymization algorithms (such as Hilbert, RTree and more), is extended to
support t-closeness and provides a simple and consistent API for both small and large
data sets.

4.8.2 Key Features

In this section, we highlight the main advantages of the BDA service, which are the
following:

• Increased Privacy: support for releasing data sets while preserving personal pri-
vacy: The service supports several advanced k-anonymity algorithms able to pro-
duce anonymized data sets which preserve personal privacy as well as data utility.
These include: Mondrian, Cluster based, Hilbert and R+-Tree based algorithms.
The service provides support for t-closeness for all algorithms.
• Support for big data: The service supports large data sets. Specifically, the two

best performing algorithms (Hilbert and R+-Tree) have been modified to support
scalable anonymization of large data sets.
• Flexible Configuration: The service enables the user to configure the anonymization

algorithm, the parameters k and t as well as the data privacy types (PII, QI, SA). In
turn, the user can apply a risk based approach and release data which contains more
utility (information) with a higher degree of risk for personal privacy or, alternatively,
a data set with a low risk for personal privacy and less utility.

In Figure 44 we show a SWOT analysis of the given service.

4.8.3 Usage Model and Stakeholders

The BDA Service has two main stakeholder:

• The customer is the one who has access to the BDA Service. He can perform
anonymization without knowledge of the anonymization algorithms, or worries whether
the algorithm scales to handle big data. The customer benefits from the anonymiza-
tion service without the complexities of deploying and managing the service or the

113 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Helpful
(to achieve the objective)

Harmful
(to achieve the objective)

In
te

rn
al

or
ig

in
(p

ro
du

ct
/c

om
pa

ny
at

tr
ib

ut
es

)
E

xt
er

na
l

or
ig

in
(e

nv
ir

on
m

en
t/m

ar
ke

t
at

tr
ib

ut
es

)

Increased privacy Support for Big Data

Performance overhead

Spoofing
Information disclosure

Tampering
Elevation of privilege

Repudiation
Denial of service

Figure 44: SWOT analysis of Secure Archiving Service (BDAaaS).

Spark cluster. As the service provider has access to the data the customer must
trust the service provider.
• The BDAaaS provider is the one anonymizing the data. He is the one maintaining

and deploying the anonymization algorithms and is responsible for setting up the
spark cluster. He has access to the data and must secure access to it. However, the
provider may remove all data once the processing is complete, removing the need
for (external) persistence storage and minimize the security risk.

4.8.4 Service Model and Interaction Dynamics

In this section, we explain the interaction with the service and review the service major
components.

The cloud customer, using a web browser or a local application, is the one initiating all
the interactions. To anonymize a data set the following steps must be taken:

1. Upload file
2. Upload configuration
3. Anonymize
4. Download anonymized file

Each step comprises of a single REST API call.

114 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

The BDAaaS provider is the one running the Anonymization service. The service has
the following components (see Figure 1):

1. Anonymization core controller – a component responsible for handling all REST API
calls and implements the business logic.

2. DATAPRIV library – this library implements the underlying anonymization algo-
rithms. It can be called from the controller or from the BDA Spark component.

3. BDA Spark – a component that provides support for big data anonymization. It is
the one managing the Spark cluster and utilizes the DATAPRIV library for its core
anonymization algorithms.

4. Spark cluster – a general purpose spark cluster which can handle large scale data
sets.

Figure 45: The architecture of the service

4.8.5 Provider/Consumer Scope of Control

The BDAaaS is deployed in a very typical manner. It involves two parties, a consumer
and provider.

• Consumer – The consumer scope of control is minimal. The consumer is able to
initiate the interaction and control the service operation. The exposed controls allow
the user to customize the anonymization operation (the algorithms and parameters)
and specify the degree of parallelism (number of cluster nodes participating).
• BDAaaS provider – The BDAaaS provider is responsible for operating and managing

the cloud and the service. In addition, the provider is responsible for running and
managing the spark cluster.

4.8.6 Paramters

There are no special parameters available.

115 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

4.8.7 Application Development

Attack Surface Analysis

During our analysis, we consider the following attack surfaces:

Network attack surface:

The service builds upon the Spring MVC framework to implement the REST API. There-
fore, the network attack surface of Spring MVC framework is included in the service
network attack surface. Additionally, the BDA service uses the Spark cluster to handle
big data. Therefore, the network attack surface of Spark is also included in the service’s
network attack surface. Both the Spark cluster and Spring MVC are trusted. We assume
the Spark cluster itself is deployed within the Trust boundary. Therefore, the network
attack surface is minimal .

Software Attack surface:

The service provides the following operations: Post MacroConfiguration Retrieve Macro-
Configuration Delete MacroConfiguration Upload file Download file Delete file Perform
anonymization We note that for input validation we use the standard Spring MVC mech-
anisms. In particular, converting the MacroConfiguration json to an object is done by
Spring MVC serialization mechanism and erroneous formats will be caught. We note that
using authentication mechanism will reduce the software attack surface and prevent the
attackers from exploiting the service’s REST API. Additionally, further decreasing the
attack surface can be done by deploying the service inside the enterprise and prevent
unauthenticated users from accessing the service.

Physical Attack surface:

Securing the servers – by the cloud provider – on which the service is deployed will prevent
physical access of the attackers. Reducing the attack surface even more can be done by
deploying the servers inside the enterprise (or private cloud) and allow access only to
authorized users.

We used Microsoft Threat Modelling tool to create the attack surface model for the
anonymization service (see Figure 2)

Gathering Threats with STRIDE

STRIDE Category Original Not-Applicable Mitigated/Design Resulting

Spoofing 6 3 2 1
Tampering 8 3 1 4
Repudiation 1 - - 1
Information Disclosure 3 1 - 2
Denial of Service 3 - 1 2
Elevation of Privilege 6 1 3 2

Total 27 8 7 12

116 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Figure 46: Attack surface model for the anonymization service.

In the following sections we address the threats, and propose solutions for the unsolved
threats.

File System Threats:

The web service uses the local file system as storage for the uploaded file and resulting
anonymized data. The file system is accessible only the OS of the machine, which is a
trusted party.

ID Type Description Status/Solution

1 Spoofing
File System may be spoofed by an attacker
and this may lead to data being written to
the attacker’s target instead of File System.

use a standard
authentication
mechanism to iden-
tify the destination
data store

2
Denial of
Service

Does Web Service or File System take explicit
steps to control resource consumption? Re-
source consumption attacks can be hard to
deal with, and there are times that it makes
sense to let the OS do the job. Be careful
that your resource requests don’t deadlock,
and that they do timeout.

Mitigated by De-
sign

117 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

3 Spoofing

File System may be spoofed by an attacker
and this may lead to incorrect data delivered
to Web Service. Consider using a standard au-
thentication mechanism to identify the source
data store.

N/A

4
Information
Disclosure

Improper data protection of File System can
allow an attacker to read information not in-
tended for disclosure.

Review authoriza-
tion settings and re-
move files once the
operation has com-
pleted

Cluster Related Threats:

Our design assumes the cluster is deployed locally or within the trust boundary. When the
BDAaaS provider deploy a cluster in a trusted environment we assume that the provider
is the only authorized person who can access the cluster or manage it.

ID Type Description Status/Solution

5 Tampering

If Web Service is given access to memory, such
as shared memory or pointers, or is given the
ability to control what Cluster executes (for
example, passing back a function pointer.),
then Web Service can tamper with Cluster.
Consider if the function could work with less
access to memory, such as passing data rather
than pointers. Copy in data provided, and
then validate it.

N/A. The service
does not control ac-
cess or control the
Cluster.

6 Tampering

Packets or messages without sequence num-
bers or timestamps can be captured and re-
played in a wide variety of ways. Implement
or utilize an existing communication protocol
that supports anti-replay techniques (inves-
tigate sequence numbers before timers) and
strong integrity.

use authentication
and integrity mech-
anism between the
web service and the
Cluster

7 Tampering

Attackers who can send a series of packets or
messages may be able to overlap data. For
example, packet 1 may be 100 bytes starting
at offset 0. Packet 2 may be 100 bytes starting
at offset 25. Packet 2 will overwrite 75 bytes
of packet 1.

Use authentication,
authorization and
integrity mecha-
nisms

118 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

8
Elevation
Of Privilege

Cluster may be able to impersonate the con-
text of Web Service in order to gain additional
privilege.

Mitigated by De-
sign

9 Tampering

If Cluster is given access to memory, such
as shared memory or pointers, or is given
the ability to control what Web Service ex-
ecutes (for example, passing back a function
pointer.), then Cluster can tamper with Web
Service. Consider if the function could work
with less access to memory, such as passing
data rather than pointers. Copy in data pro-
vided, and then validate it.

Mitigated by De-
sign

10 Tampering

Packets or messages without sequence num-
bers or timestamps can be captured and re-
played in a wide variety of ways. Implement
or utilize an existing communication protocol
that supports anti-replay techniques (inves-
tigate sequence numbers before timers) and
strong integrity.

use authentication
and integrity mech-
anism between the
web service and the
Cluster

11 Tampering

Attackers who can send a series of packets or
messages may be able to overlap data. For
example, packet 1 may be 100 bytes starting
at offset 0. Packet 2 may be 100 bytes starting
at offset 25. Packet 2 will overwrite 75 bytes of
packet 1. Ensure you reassemble data before
filtering it, and ensure you explicitly handle
these sorts of cases.

Use authentication,
authorization and
integrity mecha-
nisms

12
Elevation
Of Privilege

Web Service may be able to impersonate the
context of Cluster in order to gain additional
privilege.

N/A. The web Ser-
vice is trusted.

Configuration file related threats:

The configuration file contains very little data – the port number which web service should
use. In addition, the configuration file is located on the same machine as the web service,
and, the only party who can access and manipulate the file is the service provider.

ID Type Description Status/Solution

13
Information
Disclosure

Improper data protection of Configuration
File can allow an attacker to read informa-
tion not intended for disclosure. Review au-
thorization settings.

N/A
No sensitive data is
stored in the file

119 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

14 Spoofing
Configuration File may be spoofed by an at-
tacker and this may lead to incorrect data de-
livered to Web Service.

Mitigated by De-
sign

15 Spoofing

Configuration File may be spoofed by an at-
tacker and this may lead to data being written
to the attacker’s target instead of Configura-
tion File.

Mitigated by De-
sign

Client browser related threats:

Currently the client is using the http protocol to query the web service (see Figure), which
leads to several threats. However an industrial strength deployment would address those
threats by configuring the web service to use https as well as a trusted authentication and
authorization mechanism.

Id Type Description Status/Solution

16
Elevation
Of Privilege

Web Service may be able to remotely execute
code for Browser Client.

Scan and validate
the service code for
bugs. Use a stan-
dard authentication
mechanism to iden-
tify the source pro-
cess.

17 Spoofing
Browser Client may be spoofed by an attacker
and this may lead to unauthorized access to
Web Service.

Use a standard au-
thentication mecha-
nism to identify the
source process.

18 Spoofing
Web Service may be spoofed by an attacker
and this may lead to information disclosure
by Browser Client.

N/A (HTTPS)

19 Tampering

Data flowing across HTTP may be tampered
with by an attacker. This may lead to a de-
nial of service attack against Web Service or
an elevation of privilege attack against Web
Service or an information disclosure by Web
Service. Failure to verify that input is as ex-
pected is a root cause of a very large number
of exploitable issues.

N/A (HTTPS)

120 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

20 Tampering

If Browser Client is given access to memory,
such as shared memory or pointers, or is given
the ability to control what Web Service exe-
cutes (for example, passing back a function
pointer.), then Browser Client can tamper
with Web Service.

Mitigated by De-
sign

21 Repudiation
Web Service claims that it did not receive data
from a source outside the trust boundary.

use logging or au-
diting to record the
source, time, and
summary of the re-
ceived data.
.

22
Information
Disclosure

Data flowing across HTTP may be sniffed by
an attacker. Depending on what type of data
an attacker can read, it may be used to attack
other parts of the system or simply be a dis-
closure of information leading to compliance
violations.

N/A (HTTPS)

23
Denial Of
Service

Web Service crashes, halts, stops or runs
slowly; in all cases violating an availability
metric.

Test service before
deployment.

24
Denial Of
Service

An external agent interrupts data flowing
across a trust boundary in either direction.

Use an authoriza-
tion mechanism for
the trusted bound-
ary.

25
Elevation
Of Privilege

Web Service may be able to impersonate the
context of Browser Client in order to gain ad-
ditional privilege.

Mitigated by De-
sign (input check)

26
Elevation
Of Privilege

Browser Client may be able to remotely exe-
cute code for Web Service.

Mitigated by De-
sign (input check)

27
Elevation
Of Privilege

An attacker may pass data into Web Service in
order to change the flow of program execution
within Web Service to the attacker’s choosing.

Mitigated by De-
sign (input check

4.8.8 Operational Aspects

As explained above, when the service is anonymizing a large data set, the BDA Spark
component is the one responsible for interacting with the Spark cluster. During the
development of the service, we assumed that the cluster service is deployed locally, or
alternatively inside the trust boundary. Note, however, that if the service provider utilizes
a cluster outside the trust boundary additional security measures must be taken.

Lastly, to support deployments where a Spark cluster is not available, the service supports
a local deployment of Spark. This deployment allows the user to configure the service to
run parallel algorithms on smaller sized data sets although there is no cluster available.

121 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

5 Summary and Conclusions

In this report we presented the results of the effort undertaken in the project to guide the
development of security enhanced services. The challenges addressed in this work were
manifold and the following goals have been achieved:

• Bring together cryptographers and industry people to develop novel security en-
hanced applications
• Exploit the potential of the multidisciplinary consortium as good as possible
• To standardize and streamline the development and documentation in the project
• Develop a reference manual for Prismacloud services

To reach the first goal, we had to improve the communication in the project and identify
the right languages for different levels and phases of developments in the project. The
most important step towards this goal was the development of a reference architecture.
The architecture served the purpose to identify and separate the different expert domains
we found in the project and define interfaces in order to coordinate documentation and
coordination among the project partners, i.e., to implement a very efficient and lean in-
frastructure to coordinate the interdisciplinary work. The development of a reference
architecture worked out to be extremely helpful in the project and did work well. It was
used throughout all work packages to identify interaction points and to group and locate
work items in the large effort Prismacloud is. The architecture helped to develop the
concept of the Prismacloud toolkit and the Prismacloud services as key exploitable
results of the project, and made clear how they can be exploited independently of the
applications developed to further improve the impact of the project. The architecture
was also ideally suited to communicate the structure of the project to external people, no
matter if they are technical experts or from a different field.

Additionally, together with the architecture we defined a development methodology
which leveraged the structure of the architecture and its very natural interfaces. It is based
on the idea of component reuse and the well known V-model in software development.
The requirements are defined, extracted and translated in a top down approach and the
development and testing is done bottom up. However, the major idea of the methodology
is to support reuse and encapsulate knowledge of lower layers in well known black box
components. Systems components can be reused without deeper understanding of inner
workings in a straight forward way, i.e., to prevent potential misunderstanding or wrong
configuration.

The basic methodology was than mapped into guidelines and best practices to support
secure by design service composition and development. The most important components
of the proposed guidelines have also been defined as project standards for documentation
of the Prismacloud services. For us, it was important to prepare documentation for the
most important steps of software and service development, such that they can later be
reused when real project development starts.

As a result of this activities the document also contains a reference documentation
of the Prismacloud services. All eight Prismacloud services have been analysed

122 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

according the project standard and follow the overall architectural design guidelines. In
particular they are based on the developed tools specified in WP5 and the services can
be considered as a very specific and easy way to deliver the functionality of the tools to
application developers.

All in all, work described in this report was extremely fruitful for the overall project and
fostered many interesting discussions. It helped to organize the work and communication
as well as enabled a common reference documentation of Prismacloud tools and services.
We now have a well documented set of generic domain independent Prismacloud services
which can be used in many contexts to build novel applications. The work was conducted
in very close cooperation with other WP7 tasks but also all other work packages, especially
in the development of the architecture all project partners were involved.

123 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

References

[a4c14] D:c-2.1 report detailing conceptual framework, version: Final of 13.10.2014.
A4Cloud deliverable, 2014.

[AFHP+15] Alaa Alaqra, Simone Fischer-Hübner, John Sören Pettersson, Frank van
Geelkerken, Erik Wästlund, Melanie Volkamer, Thomas Länger, and Hen-
rich C. Pöhls. PRISMACLOUD public deliverable D2.1: Legal, Social and
HCI Requirements, 2015.

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern
Language: Towns, Buildings, Construction. Oxford University Press, 1977.

[BDD+15] Johannes Buchmann, Denise Demirel, David Derler, Lucas Schabhüser, and
Daniel Slamanig. PRISMACLOUD D5.8: Overview of Verifiable Comput-
ing Techniques Providing Private and Public Verifiability. Technical report,
H2020 Prismacloud, www.prismacloud.eu, 2015.

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Mar-
cus Page, Jakob Schelbert, Dominique Schröder, and Florian Volk. Security of
sanitizable signatures revisited. In Proceedings of the 12th International Con-
ference on Practice and Theory in Public Key Cryptography (PKC), volume
5443 of LNCS, pages 317–336, Berlin, Heidelberg, 2009. Springer-Verlag.

[BPS13] Christina Brzuska, Henrich C. Pöhls, and Kai Samelin. Non-interactive public
accountability for sanitizable signatures. In Sabrina De Capitani di Vimer-
cati and Chris Mitchell, editors, Public Key Infrastructures, Services and
Applications: 9th European Workshop, EuroPKI 2012, Pisa, Italy, Septem-
ber 13-14, 2012, Revised Selected Papers, pages 178–193, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, pages 136–145. IEEE Computer Society, 2001.

[CCK+06] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nancy A.
Lynch, Olivier Pereira, and Roberto Segala. Time-bounded task-pioas: A
framework for analyzing security protocols. In Shlomi Dolev, editor, Dis-
tributed Computing, 20th International Symposium, DISC 2006, volume 4167
of Lecture Notes in Computer Science, pages 238–253. Springer, 2006.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally
composable security with global setup. In Salil P. Vadhan, editor, Theory of
Cryptography, 4th Theory of Cryptography Conference, TCC 2007, volume
4392 of Lecture Notes in Computer Science, pages 61–85. Springer, 2007.

[CEK+16] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and
Daniel Rausch. Universal composition with responsive environments. IACR
Cryptology ePrint Archive, 2016:34, 2016.

124 of 145

www.prismacloud.eu

D7.6 Guidelines and Architecture for Secure Service Composition

[CKL+15] Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen, Gre-
gory Neven, and Michael Østergaard Pedersen. Formal Treatment of Privacy-
Enhancing Credential Systems. In Orr Dunkelman and Liam Keliher, editors,
Selected Areas in Cryptography - SAC 2015, volume 9566 of Lecture Notes in
Computer Science, pages 3–24. Springer, 2015.

[DDH+16] Denise Demirel, David Derler, Christian Hanser, Henrich C. Pöhls, Daniel
Slamanig, and Giulia Traverso. PRISMACLOUD public deliverable D4.4:
Overview of Functional and Malleable Signature Schemes, 2016.

[DG13] Nick Doty and Mohit Gupta. Privacy Design Patterns and Anti-Patterns. In
Workshop “A Turn for the Worse: Trustbusters for User Interfaces Work-
shop” at SOUPS 2013 Newcastle, UK, 2013.

[DKLT16] Denise Demirel, Stephan Krenn, Thomas Lorünser, and Giulia Traverso. Effi-
cient and Privacy Preserving Third Party Auditing for a Distributed Storage
System. In International Conference on Availability, Reliability and Security
– ARES 2016. IEEE, 2016. (to appear).

[DKS16] David Derler, Stephan Krenn, and Daniel Slamanig. Signer-Anonymous
Designated-Verifier Redactable Signatures for Cloud-Based Data Sharing,
2016. (currently under submission).

[ERS02] Eastlake, Reagle, and Solo. XML-signature syntax and processing. W3C
recommendation. www.w3.org/TR/xmldsig-core/, Feb. 2002.

[Eur16] European Commission. Regulation (EU) 2016/679 of The European Par-
liament and of The Council, of 27 April 2016, on the protection of natu-
ral persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation), 2016. (online 20.7.2017).

[FHKP+11] S. Fischer-Hübnner, C. Köffel, J.-S. Pettersson, P. Wolkerstorfer, C. Graf,
and L. Holtz. HCI Pattern Collection–Version 2, 2011. (PrimeLife project).

[fSC05] International Organization for Standardization and International Electrotech-
nical Commission. Information technology – Security techniques – Informa-
tion security management systems – Requirements). Standard, July 2005.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.
ISBN 0-201-63361-2, 1994.

[Gro14] Thomas Groß. Efficient certification and zero-knowledge proofs of knowledge
on infrastructure topology graphs. In ACM Workshop on Cloud Computing
Security (CCSW 2014), pages 69–80. ACM, 2014.

[HTL+14] A. Hudic, M. Tauber, T. Lorünser, M. Krotsiani, G. Spanoudakis, A. Mauthe,
and E. R. Weippl. A multi-layer and multitenant cloud assurance evaluation

125 of 145

www.w3.org/TR/xmldsig-core/

D7.6 Guidelines and Architecture for Secure Service Composition

methodology. In Cloud Computing Technology and Science (CloudCom), 2014
IEEE 6th International Conference on, pages 386–393, Dec 2014.

[Kra01] Hugo Krawczyk. The order of encryption and authentication for protecting
communications (or: How secure is ssl?). In Annual International Cryptology
Conference, pages 310–331. Springer, 2001.

[KT13] Ralf Küsters and Max Tuengerthal. The IITM model: a simple and expressive
model for universal composability. IACR Cryptology ePrint Archive, 2013:25,
2013.

[Küs] Ralf Küsters. Simulation-based security with inexhaustible interactive turing
machines. In Computer Security Foundations Workshop, (CSFW-19 2006).

[LHS15] Thomas Loruenser, Andreas Happe, and Daniel Slamanig. ARCHISTAR:
Towards Secure and Robust Cloud Based Data Sharing. In Cloud Computing
Technology and Science (CloudCom), 2015 IEEE 7th International Confer-
ence on, pages 371–378, nov 2015.

[MA05] M. McIntosh and P. Austel. XML signature element wrapping attacks and
countermeasures. In Proceedings of Workshop on Secure Web Services, 2005.

[Mau11] Ueli Maurer. Constructive cryptography - A new paradigm for security defini-
tions and proofs. In Sebastian Mödersheim and Catuscia Palamidessi, editors,
Theory of Security and Applications - Joint Workshop, TOSCA 2011, volume
6993 of Lecture Notes in Computer Science, pages 33–56. Springer, 2011.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography. In Bernard Chazelle,
editor, Innovations in Computer Science - ICS 2010, pages 1–21. Tsinghua
University Press, 2011.

[NA12] Nist and Emmanuel Aroms. NIST Special Publication 800-53 Revision 3
Recommended Security Controls for Federal Information Systems and Orga-
nizations. CreateSpace, Paramount, CA, 2012.

[Pah15] Claus Pahl. Containerization and the paas cloud. IEEE Cloud Computing,
2(3):24–31, 2015.

[PH11] Henrich C. Pöhls and Focke Höhne. The Role of Data Integrity in EU Digital
Signature Legislation - Achieving Statutory Trust for Sanitizable Signature
Schemes. In International Workshop on Security and Trust Management
(STM). Springer LNCS, 2011.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preser-
vation of secure reactive systems. In Dimitris Gritzalis, Sushil Jajodia, and
Pierangela Samarati, editors, CCS 2000, Proceedings of the 7th ACM Con-
ference on Computer and Communications Security, pages 245–254. ACM,
2000.

126 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

[SFBH+06] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank
Buschmann, and Peter Sommerlad. Security Patterns - Integrating Security
and Systems Engineering. John Wiley & Sons, Ltd. West Sussex, England,
2006.

[SG07] J. Schwenk S. Gajek, L. Liao. Towards a Formal Semantic of XML Signature.
In W3C Workshop Next Steps for XML Signature and XML Encryption, 2007.

[SH12] Daniel Slamanig and Christian Hanser. On cloud storage and the cloud of
clouds approach. In ICITST 2012, pages 649–655, 2012.

[vGPFH15] F.W.J. van Geelkerken, Henrich C. Pöhls, and Simone Fischer-Hübner. The
legal status of malleable- and functional signatures in light of Regulation
(EU) No 910/2014. In Proc. of 3rd International Academic Conference of
Young Scientists on Law & Psychology 2015 (LPS 2015). L’viv Polytechnic
Publishing House, Nov. 2015.

127 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

A Toolkit Overview

In this section we are going to quickly review the tools developed in Prismacloud and
their most important implications when it comes to cloudification. The final specifications
of the tools will be developed in WP5, however, a preliminary high-level view on them
will show its structure and how they are related to the service design according to the
Prismacloud methodology.

As already mentioned, a tool can be thought of as an abstract concept, or piece of software,
which is composed of various primitives and can be parametrized in various different ways.
Subsequently, we briefly discuss all the tools.

A.1 Secure Object Storage Tool (SECSTOR)

This tool is dedicated to build cloud storage systems with strong security guarantees,
i.e., confidentiality and availability. It builds upon the idea of a federated or multi-cloud
application [SH12] and the different components of the tool are shown in Figure 47. A
dealer component generates data fragments and sends them to storage nodes called server.
The servers can be considered storage nodes which are also comprising active components
with the ability to execute protocol logic in addition to the basic read and write operations
supported by passive cloud storage interfaces. The reader component is reconstructing
the data for read operations and the verifier is able to audit the storage system, i.e., it
can remotely check the state of the data stored in the system.

Dealer
(Client)

Server 1
(Provider)

Server 2
(Provider)

Server n
(Provider)

.

.

.

Reader
(Client)

Verifier
(Auditor)

Figure 47: Secure Object Storage Tool (SECSTOR).

To achieve the desired security properties we are leveraging the concept of secure informa-
tion dispersal – data is fragmented and distributed over different servers to build a secure
and reliable virtual service on top of multiple less reliable services. Due to the use of secret
sharing the individual fragments contain no information about the plaintext data. Our
goal is to design a storage layer which is more than the sum of its parts. No single cloud
provider shall have access to plaintext data or be able to tamper with them by modifying
local fragments nor are all fragments necessary to recover the plaintext In summary, the
overall availability achieved by the Secure Object Storage Tool is better than the one of

128 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

individual nodes and the tool also prevents from most of provider related threats in cloud
usage.

In Prismacloud we apply secure variants of data fragmentation called secret sharing.
With secret sharing, data can be encoded into multiple fragments such that no single
fragment contains any information about the original content and a predefined threshold of
k fragments is required to reconstruct the data. If these fragments (shares) are distributed
to different storage servers, the data stays secure w.r.t. confidentiality protection as long as
less than k servers are colluding to reconstruct the information and the data stays secure
w.r.t. availability as long as more than k honest servers are reachable. Additionally, it must
be noted that the confidentiality and availability guarantees of the Prismacloud Secure
Object Storage Tool are also keyless, which further facilitates sharing of data between
different users in the system.

From a functional point-of-view, the tool provides a way for outsourcing data storage
to potentially less trustworthy and reliable storage providers with both increased data
availability and confidentiality [LHS15]. Furthermore, we are targeting robustness against
strong adversary models like active attackers or adversaries with unlimited computational
power. Additionally the tool is supporting concurrent multi-user access by potentially
malicious clients and provides other interesting features discussed below.

Dealer Component. The main function of the dealer component (Dealer) is to encode
the data and generate the different fragments used in the distributed storage network.
The dealer works on unstructured data, and at its core, it implements secret sharing
protocols. However, in order to support different application scenarios, adversary models
and network models, the component must support various encoding schemes and protocols.
The common functionality behind the different protocols is that of threshold secret sharing.
The choice of threshold sharing used ranges from plain information theoretical solutions
(PSS) to more efficient but only computational secure variants (CSS) and also verifiable
versions is the dealer component is running on untrusted platforms. On the connectivity
level, the dealer has an authentic and private comunication channel to each server in the
system.

Server Component. The server component (Server) represents the storage backend
used to compose the cloud-of-clouds storage layer. Multiple servers are required and each
of them communicates with the Dealer over a secure channel (authentic and private).
The different servers are holding the data and represent storage nodes in different trust
zones of the system. The trust zones are used to model the non-collusion assumption. In
practice, storage options range from fully-federated dedicated cloud providers to storage
nodes under different administrative domains within a cloud provider’s data center. The
server components are communicating with the dealer over secure channels and for some
of the features provided by the tool, the servers also have secure channels between them.

Reader Component. The reader component (Reader) is responsible for reconstruction
of data stored in the system. Basically it encapsulates the reconstruction procedure of the
used secret sharing method plus the interaction protocol to get sufficient shares to recover
the plaintext information desired. We assume secure channels between a reader and all
involved servers in the system.

129 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

Table 7: Features of the SECSTOR tool.

ID Feature C/I/A Method

PC.Tool.1.F.01 Protect data from provider access C SSS (CSS)
PC.Tool.1.F.02 Provide long-term secuirty C SSS (SS)
PC.Tool.1.F.03 Long-term security with proactivity C SSS (PSS)
PC.Tool.1.F.04 Self-healing properties to recover from failure A SSS (PSS)
PC.Tool.1.F.05 Robustness against malicious clients I SSS (VSS)
PC.Tool.1.F.06 Mean to verify the retrievabiity of data I/A RDC
PC.Tool.1.F.07 Enable third party auditing I/A RDC
PC.Tool.1.F.08 Support self audititing I/A RDC
PC.Tool.1.F.09 Efficient means to verify large data sets I RDC (BatchRDC)
PC.Tool.1.F.10 Robustness against passive attacks after sharing C
PC.Tool.1.F.11 Robustness against active attacks after sharing C/I BFT
PC.Tool.1.F.12 Robustness against passive attacks C
PC.Tool.1.F.13 Robustness against failstop attacks C/I/A PAX
PC.Tool.1.F.14 Robustness against active attacks C/I/A BFT
PC.Tool.1.F.15 Support multiple concurrent clients I
PC.Tool.1.F.16 Support multiple concurrent users I IAM
PC.Tool.1.F.17 Support secure deletion C BFT
PC.Tool.1.F.18 Secure and robust access logs C/I/A BFT
PC.Tool.1.F.19 Access privacy for plaintext data P PIR
PC.Tool.1.F.20 Access privacy for confidential data P PIR
PC.Tool.1.F.21 Access privacy with leakage detection P PIR (SPIR)

Verifier Component. This component is responsible for the verification of data stored
in the system. Together with the servers it conducts a protocol to obtain a proof about the
retrievability of stored data, i.e., it remotely checks if the servers are still storing consistent
fragments. The verifier is not considered to be trusted, therefore, the auditing protocols
executed must be privacy preserving, i.e., it must not leak any information about the data
stored. Based upon this, the verifier must have an authentic channel to each of the servers,
but those channels don’t need to be confidentiality protected. The Verifier is intended to
model a third-party auditing service which can check the data consistency remotely with
strong cryptographic properties but without learning anything about the data.

The features supported by the SECSTOR tool are shown in Table 7. It provides various
different features which can be built into the system. However, some of them have a major
impact in system design and some of them are conflicting with others. A full reference
will be given in WP5 with all protocol explanation and configuration guidance.

A.2 Flexible Authentication with Selective Disclosure Tool (FLEXAUTH)

This tool supports the authentication of arbitrary messages (or documents) by means of
digital signatures with selective disclosure features. This tool has three different compo-

130 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

nents (cf. Figure 48), being an authentication component, a selective disclosure component,
and a verification component.

Authentication Component. The originator generates a signed message that contains
well defined rules (policy) what parts of the message can be selectively disclosed.

Selective Disclosure Component. Given a signed message from the authentication
component, it provides the functionality to selectively disclose parts of the information of
the original signed message (or document) to other receiving parties. When this selective
disclosure happens according to the defined policy, the authenticity can still be verified.

Verification Component. A verifying party can then use this part of the tool to verify
the authenticity of any partial information that was created from authentic information
just by means of the originator’s verification key. Note, the verification component checks
if only authorised, i.e., conforming to policy, selections were done.

Auth Selective
Disclosure Verify

Figure 48: Flexible Authentication with Selective Disclosure Tool

For the realisation of this component several cryptographic primitives can be used. Es-
pecially if the authentication component shall be decoupled from the selective disclosure
component, so that the latter can operate bound by the policy but without the need of
an interaction, then a group of special digital signature schemes referred to as malleable
signatures can be facilitated.

A.3 Verifiable Data Processing Tool (VERIDAT)

This tool supports the delegation of processing authenticated data in a way that the result
can be efficiently verified for correctness. It comprises three different components depicted
in Figure 49. The data (and potentially some additional metadata) originates at the client
component. The data processing component is given a set of input data and a description
of the processing rules, and outputs the result of the computation, as well as a proof
certifying the correctness of the delegated computation. The verification component takes
a result and a proof (and potentially additional information) and can efficiently verify the
correctness of the computation.

On a high level, the Verifiable Data Processing Tool allows to perform verifiable compu-
tations on data such as computing statistics on medical data. Depending on the type of
verifiability, thereby, the data processed can be either only verified by the data owner or
any third party. Although there are very powerful technical tools for very broad classes of
functions, they are not yet practically efficient. In deliverable D5.8 [BDD+15] we provide a
comprehensive overview of the current state of the art in verifiable computing and discuss

131 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

shortcomings of existing solutions.

Client Compute Verify

Figure 49: Verifiable Data Processing Tool.

In Prismacloud we aim at developing a tool that provides efficient solutions for restricted
classes of functions. Besides efficiency, we aim for schemes that are secure against so called
strong (adaptive) adversaries, i.e., adversaries who can adaptively ask computation queries
and also learn about whether the forgery attempts verify. This is required, because some
of the processed data has a high protection level. For the same reason we also want to
support schemes that offer input and/or output privacy. In a first step we only address
computationally bounded adversaries and aim at extending the tool by variations covering
computationally unbounded adversaries at a later stage. With respect to the underlying
primitives, we focus on approaches where primitives with reasonable performance are
available. For each variation we will take both types of verifiability, i.e., private and
public verifiability, into account. The latter one is preferable, because it allows to perform
third party audits. However, for some applications it might be sufficient that only the
data owner, i.e., client component, is able to perform the verification and for this scenario
we might get a more efficient solution when providing only private verifiability. The tool
will heavily rely on malleable signature primitives. In particular, to authenticate the input
data which then support to evaluate arithmetic circuits. In addition the tool may also
require secret sharing schemes, functional signature schemes and zero-knowledge proofs.

The components of the Verifiable Data Processing Tool are as follows:

Client Component. The client component produces a set of signed data on which it
wants to have a function, represented as an (arithmetic) circuit C, evaluated.

Computation Component. The computation component receives a circuit C and signed
personal data from one or more client components and produces a signed output together
with a proof of correct computation.

Verification Component. The verification component takes the result and proofs com-
puted by the computation component and verifies the correctness of the evaluation of a
circuit C.

The tool developed will contain several variations that differ with respect to the func-
tionalities supported. More precisely, we will provide different classes of operations and
several levels of security, privacy, and verifiability. This allows to use the tool for many
different applications.

132 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

A.4 Topology Certification Tool (TOPOCERT)

The Topology Certification Tool supports the application of graph signatures to certify and
prove properties of topologies represented as graphs. The tool is realized as an interactive
protocol framework between the roles of an issuer, a prover and a verifier. It consists
of three abstract components, depicted in Figure 50, that encapsulate the different roles.
The topology is provided by another entity in a standard graph format.

Issuer Prover Verifier

Figure 50: Topology Certification Tool.

This specification relates to the cryptographic protocol framework proposed by Groß [Gro14].

Issuer Component. Given a graph representation of the topology in a standard format,
the issuer is responsible for the certification of the encoding for the topology certification
framework, as well as for issuing a topology certificate to the prover. The issuer outputs
a graph signature on that graph.

Prover Component. The prover compiles a zero-knowledge proof on the topology cer-
tificate that can convince a verifier of the requested security properties of the graph in a
zero-knowledge proof of knowledge.

Verifier Component. The verifier validates the proof against the public key of the issuer
and is convinced of the requested security properties.

On a high level, the Topology Certification Tool supports the creation of digital signatures
on topology graphs in such a way that the graphs are accessible to zero-knowledge proofs of
knowledge. This will support the infrastructure auditing service of Prismacloud which
is tasked to show isolation of different resources, for example, whether the resources of a
Tenant A are segregated from the resources of a Tenant B. Consequently, the infrastructure
auditing service requires additonal functionalities beyond the foundational operations of
the Issuer, Prover and Verifier components from the Topology Certification Tool. First, the
Issuer needs to be capable of issuing topology certificates in the size of the infrastructure
in question. Second, the Prover and the Verifier need to be able to compute isolation
proofs on topology certificates. Such proofs have been specified by Groß [Gro14]. These
proofs require that the proof of possession on the topology certificate needs to be further
decomposed into commitments on the edges of the graph. Furthermore, the prover needs to
prove equality of the committed values with the topology certificate, compute a cumulative
product in commitments and finally show that these products are co-prime.

To facilitate these proofs, the graph considered should not be edge-labeled. For the in-
terface of the infrastructure we only consider undirected edge-unlabeled graphs. The

133 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

decomposition of the topology certificate in a number of commitments takes computa-
tional time proportional to the number of edges of the entire topology graph. To allow
for live demonstrations, the topology size should be selected such that the proof can be
computed in reasonable time.

A.5 Data Privacy Tool (DATAPRIV)

This tool provides the means for processing data in different ways before they are moved
to untrusted environments. It includes components providing the capabilities to encrypt
data while preserving the format or ordering of the data. This tool enables users of legacy
applications to move their databases to a public cloud, while preserving data privacy and
confidentiality. Moreover, the tool provides components for data generalization as means
for anonymizing bulk data using k-anonymity techniques.

Client
Privacy

Computation
(ENC/DEC/ANON)

Figure 51: Data Privacy Tool.

On a high level, this tool will provide the means to process data in different ways, sup-
porting different purposes and different privacy requirements. It will include different
components providing the following capabilities: (1) data encryption while preserving for-
mat or order, and (2) data generalization to guarantee k-anonymity. The tool’s input may
range from a single data item (e.g., to be encrypted) to a complete data set (e.g., to be
anonymized). Based on the input data and the preferred privacy method, the processing
will produce the required output.

134 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B Threat Analysis Results

B.1 Threats for Secure Archiving

B.1.1 Tampering

ID Name

9 Risks from Logging

17 Risks from Logging

25 XML DTD and XSLT Processing

38 The Cloud Storage Data Store Could Be Corrupted

40 Risks from Logging

50 The Configuration File Data Store Could Be Corrupted

B.1.2 Denial Of Service

ID Name

7 Potential Excessive Resource Consumption for Web Service or Cache

15 Potential Excessive Resource Consumption for Web Service or File Sys-
tem

20 Potential Process Crash or Stop for Web Service

21 Data Flow HTTPS Is Potentially Interrupted

22 Data Store Inaccessible

28 Potential Process Crash or Stop for Web Service

29 Data Flow HTTPS Is Potentially Interrupted

34 Potential Excessive Resource Consumption for Web Service or Cloud
Storage

35 Data Store Inaccessible

36 Data Flow HTTPS Is Potentially Interrupted

48 Data Flow HTTPS Is Potentially Interrupted

52 Data Flow Generic Data Flow Is Potentially Interrupted

53 Data Store Inaccessible

135 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B.1.3 Spoofing

ID Name

1 Spoofing of Source Data Store Configuration File

4 Spoofing of Source Data Store Cache

5 Spoofing of Destination Data Store Cache

8 Spoofing of Destination Data Store File System

16 Spoofing of Source Data Store Cloud Storage

32 Spoofing the External Web Application External Entity

33 Spoofing of Destination Data Store Cloud Storage

46 Spoofing of the External Web Application External Destination Entity

49 Spoofing of Destination Data Store Configuration File

B.1.4 Information Disclosure

ID Name

2 Weak Access Control for a Resource

3 Weak Access Control for a Resource

6 Authorization Bypass

14 Authorization Bypass

19 Weak Access Control for a Resource

39 Authorization Bypass

45 Weak Credential Storage

B.1.5 Repudiation

ID Name

10 Lower Trusted Subject Updates Logs

11 Data Logs from an Unknown Source

12 Insufficient Auditing

13 Potential Weak Protections for Audit Data

18 Potential Data Repudiation by Web Service

27 Potential Data Repudiation by Web Service

37 Data Store Denies Cloud Storage Potentially Writing Data

41 Lower Trusted Subject Updates Logs

42 Data Logs from an Unknown Source

43 Insufficient Auditing

44 Potential Weak Protections for Audit Data

47 External Entity External Web Application Potentially Denies Receiving
Data

51 Data Store Denies Configuration File Potentially Writing Data

136 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B.1.6 Elevation Of Privilege

ID Name

23 Web Service May be Subject to Elevation of Privilege Using Remote
Code Execution

24 Elevation by Changing the Execution Flow in Web Service

26 Elevation Using Impersonation

30 Web Service May be Subject to Elevation of Privilege Using Remote
Code Execution

31 Elevation by Changing the Execution Flow in Web Service

B.2 Threats for Secure Sharing

B.2.1 Tampering

ID Name

23 Potential Lack of Input Validation for Browser Client

27 Web Service Process Memory Tampered

40 Browser Client Process Memory Tampered

48 Web Service Process Memory Tampered

51 Browser Client Process Memory Tampered

B.2.2 Denial Of Service

ID Name

2 Potential Excessive Resource Consumption for Web Service or Cloud
Storage

6 Potential Excessive Resource Consumption for Web Service or Cloud
Storage

9 Potential Excessive Resource Consumption for Browser Client or
HTML5 Local Storage

13 Data Flow Generic Data Flow Is Potentially Interrupted

19 Data Flow Generic Data Flow Is Potentially Interrupted

20 Potential Process Crash or Stop for Browser Client

29 Potential Process Crash or Stop for Browser Client

30 Data Flow Generic Data Flow Is Potentially Interrupted

37 Data Flow Generic Data Flow Is Potentially Interrupted

38 Potential Process Crash or Stop for Web Service

45 Data Flow Generic Data Flow Is Potentially Interrupted

46 Potential Process Crash or Stop for Browser Client

53 Potential Process Crash or Stop for Web Service

54 Data Flow Generic Data Flow Is Potentially Interrupted

137 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B.2.3 Spoofing

ID Name

1 Spoofing of Destination Data Store Cloud Storage

3 Spoofing of Source Data Store Cloud Storage

5 Spoofing of Destination Data Store Cloud Storage

7 Spoofing of Source Data Store Cloud Storage

10 Spoofing of Destination Data Store HTML5 Local Storage

12 Spoofing of Source Data Store HTML5 Local Storage

15 Spoofing of the Human User External Destination Entity

24 Spoofing the Human User External Entity

25 Spoofing the Browser Client Process

28 Spoofing the Web Service Process

41 Spoofing the Browser Client Process

49 Spoofing the Web Service Process

50 Spoofing the Browser Client Process

B.2.4 Information Disclosure

ID Name

4 Weak Access Control for a Resource

8 Weak Access Control for a Resource

11 Weak Access Control for a Resource

21 Data Flow Sniffing

B.2.5 Repudiation

ID Name

14 External Entity Human User Potentially Denies Receiving Data

22 Potential Data Repudiation by Browser Client

26 Potential Data Repudiation by Browser Client

39 Potential Data Repudiation by Web Service

47 Potential Data Repudiation by Browser Client

52 Potential Data Repudiation by Web Service

138 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B.2.6 Elevation Of Privilege

ID Name

16 Elevation by Changing the Execution Flow in Browser Client

17 Browser Client May be Subject to Elevation of Privilege Using Remote
Code Execution

18 Elevation Using Impersonation

31 Elevation Using Impersonation

32 Browser Client May be Subject to Elevation of Privilege Using Remote
Code Execution

33 Elevation by Changing the Execution Flow in Browser Client

34 Elevation by Changing the Execution Flow in Web Service

35 Web Service May be Subject to Elevation of Privilege Using Remote
Code Execution

36 Elevation Using Impersonation

42 Elevation by Changing the Execution Flow in Browser Client

43 Browser Client May be Subject to Elevation of Privilege Using Remote
Code Execution

44 Elevation Using Impersonation

55 Elevation Using Impersonation

56 Web Service May be Subject to Elevation of Privilege Using Remote
Code Execution

57 Elevation by Changing the Execution Flow in Web Service

58 Cross Site Request Forgery

B.3 Threats for Encryption Proxy

B.3.1 Denial of service

ID Name

17 Potential Excessive Resource Consumption for Encryption Proxy front-
end or Non Relational Database

20 Potential Excessive Resource Consumption for Proxy and protocol ana-
lyzer or Non Relational Database

31 Potential Process Crash or Stop for Encryption Proxy front-end

32 Data Flow HTTPS Is Potentially Interrupted

37 Potential Process Crash or Stop for Proxy and protocol analyzer

38 Data Flow HTTPS Is Potentially Interrupted

139 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B.3.2 Elevation Of Privilege

ID Name

3 Elevation Using Impersonation

5 Elevation Using Impersonation

23 Elevation Using Impersonation

33 Encryption Proxy front-end May be Subject to Elevation of Privilege
Using Remote Code Execution

34 Elevation by Changing the Execution Flow in Encryption Proxy front-
end

35 Cross Site Request Forgery

39 Proxy and protocol analyzer May be Subject to Elevation of Privilege
Using Remote Code Execution

40 Elevation by Changing the Execution Flow in Proxy and protocol ana-
lyzer

41 Cross Site Request Forgery

B.3.3 Information Disclosure

ID Name

16 Weak Credential Storage

19 Weak Credential Storage

B.3.4 Repudiation

ID Name

30 Potential Data Repudiation by Encryption Proxy front-end

36 Potential Data Repudiation by Proxy and protocol analyzer

B.3.5 Spoofing

ID Name

2 Spoofing the Browser External Entity

15 Spoofing of Destination Data Store Non Relational Database

18 Spoofing of Destination Data Store Non Relational Database

21 Spoofing the Browser External Entity

B.3.6 Tampering

ID Name

4 Proxy and protocol analyzer Process Memory Tampered

22 Cross Site Scripting

140 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B.4 Threats for Privacy enhancing IDM

B.4.1 Denial Of Service

ID Name

25 Potential Excessive Resource Consumption for PIDM REST API or Non
Relational Database

28 Potential Excessive Resource Consumption for PIDM Front end or Non
Relational Database

47 Potential Process Crash or Stop for PIDM REST API

48 Data Flow HTTPS Is Potentially Interrupted

53 Potential Process Crash or Stop for PIDM Front end

54 Data Flow HTTPS Is Potentially Interrupted

72 Potential Excessive Resource Consumption for Cordova plugin or
HTML5 Local Storage

82 Potential Process Crash or Stop for Cordova plugin

83 Data Flow Generic Data Flow Is Potentially Interrupted

B.4.2 Elevation Of Privilege

ID Name

19 Elevation Using Impersonation

22 Elevation Using Impersonation

31 Elevation Using Impersonation

49 PIDM REST API May be Subject to Elevation of Privilege Using Re-
mote Code Execution

50 Elevation by Changing the Execution Flow in PIDM REST API

51 Cross Site Request Forgery

55 PIDM Front end May be Subject to Elevation of Privilege Using Remote
Code Execution

56 Elevation by Changing the Execution Flow in PIDM Front end

57 Cross Site Request Forgery

74 Elevation Using Impersonation

84 Cordova plugin May be Subject to Elevation of Privilege Using Remote
Code Execution

85 Elevation by Changing the Execution Flow in Cordova plugin

141 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B.4.3 Information Disclosure

ID Name

24 Weak Credential Storage

27 Weak Credential Storage

30 Weak Authentication Scheme

63 Weak Authentication Scheme

86 Weak Authentication Scheme

B.4.4 Repudiation

ID Name

46 Potential Data Repudiation by PIDM REST API

52 Potential Data Repudiation by PIDM Front end

80 Potential Data Repudiation by Cordova plugin

B.4.5 Spoofing

ID Name

20 Spoofing the Browser External Entity

23 Spoofing of Destination Data Store Non Relational Database

26 Spoofing of Destination Data Store Non Relational Database

70 Spoofing of Destination Data Store HTML5 Local Storage

B.4.6 Tampering

ID Name

17 Browser Client Process Memory Tampered

18 Cross Site Scripting

21 Cross Site Scripting

29 PIDM REST API Process Memory Tampered

68 Replay Attacks

69 Collision Attacks

71 Authenticated Data Flow Compromised

73 Browser Client Process Memory Tampered

79 Potential Lack of Input Validation for Cordova plugin

87 Replay Attacks

88 Collision Attacks

89 Authenticated Data Flow Compromised

142 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B.5 Threats for Infrastructure Auditing

B.5.1 Tampering

ID Name

1 Authenticated Data Flow Compromised

11 Collision Attacks

12 Replay Attacks

21 Collision Attacks

22 Replay Attacks

29 Collision Attacks

31 Replay Attacks

34 TOPOCERT Tool Process Memory Tampered

36 TOPOCERT Tool Process Memory Tampered

38 TOPOCERT Tool Process Memory Tampered

46 JavaScript Object Notation Processing

53 JavaScript Object Notation Processing

60 JavaScript Object Notation Processing

B.5.2 Denial Of Service

ID Name

4 Potential Excessive Resource Consumption for Audit-Profiles Manage-
ment front-end or audit profiles store

7 Potential Excessive Resource Consumption for Audit-Profiles Manage-
ment front-end or logger

14 Potential Excessive Resource Consumption for Infrastructure Auditing
Management front-end or logger

17 Potential Excessive Resource Consumption for Infrastructure Auditing
Management front-end or audit profiles store

24 Potential Excessive Resource Consumption for GeoSeparation front-end
or audit profiles store

26 Potential Excessive Resource Consumption for GeoSeparation Web Ser-
vice or logger

41 Potential Process Crash or Stop for Audit-Profiles Management front-
end

42 Data Flow HTTPS Is Potentially Interrupted

48 Potential Process Crash or Stop for Infrastructure Auditing Manage-
ment front-end

49 Data Flow HTTPS Is Potentially Interrupted

55 Potential Process Crash or Stop for GeoSeparation front-end

56 Data Flow HTTPS Is Potentially Interrupted

143 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B.5.3 Spoofing

ID Name

3 Spoofing of Destination Data Store audit profiles store

6 Spoofing of Destination Data Store logger

13 Spoofing of Destination Data Store logger

16 Spoofing of Destination Data Store audit profiles store

23 Spoofing of Destination Data Store audit profiles store

28 Spoofing of Destination Data Store logger

B.5.4 Information Disclosure

ID Name

5 Authorization Bypass

8 Authorization Bypass

10 Weak Authentication Scheme

15 Authorization Bypass

18 Authorization Bypass

20 Weak Authentication Scheme

25 Authorization Bypass

27 Authorization Bypass

32 Weak Authentication Scheme

B.5.5 Repudiation

ID Name

40 Potential Data Repudiation by Audit-Profiles Management front-end

47 Potential Data Repudiation by Infrastructure Auditing Management
front-end

54 Potential Data Repudiation by GeoSeparation front-end

144 of 145

D7.6 Guidelines and Architecture for Secure Service Composition

B.5.6 Elevation Of Privilege

ID Name

2 Elevation Using Impersonation

9 Elevation Using Impersonation

19 Elevation Using Impersonation

30 Elevation Using Impersonation

33 Elevation Using Impersonation

35 Elevation Using Impersonation

37 Elevation Using Impersonation

39 Elevation Using Impersonation

43 Elevation Using Impersonation

44 Audit-Profiles Management front-end May be Subject to Elevation of
Privilege Using Remote Code Execution

45 Elevation by Changing the Execution Flow in Audit-Profiles Manage-
ment front-end

50 Elevation Using Impersonation

51 Infrastructure Auditing Management front-end May be Subject to Ele-
vation of Privilege Using Remote Code Execution

52 Elevation by Changing the Execution Flow in Infrastructure Auditing
Management front-end

57 Elevation Using Impersonation

58 GeoSeparation front-end May be Subject to Elevation of Privilege Using
Remote Code Execution

59 Elevation by Changing the Execution Flow in GeoSeparation front-end

145 of 145

	Executive Summary
	List of Figures
	List of Tables
	Introduction
	Scope of the document
	Relation to other project work
	Structure of the document

	Prismacloud Architecture
	Motivation and Idea
	Architecture Layers
	Primitives Layers
	Tools Layer
	Service Layer
	Application Layer

	Benefits of the Architecture
	A New Development Methodology
	Design Patterns for Inter Domain Communication

	Guidelines for Composing Secure Services
	Overview
	Requirements Engineering
	From Primitives to Tools
	Universal Composability
	Direct Construction of High-Level Primitives

	From Tools to Services
	Design, Development and Deployment
	CloudSDL from SECCRIT
	Microsoft SDL
	SECCRIT Assurance Monitoring
	Secure deployment

	Standard Identity Provisioning and Management

	Prismacloud Services
	Secure Archiving (SAaaS)
	Overview
	Key Features
	Usage model and stakeholders
	Service Model and Interaction Dynamics
	Provider/Consumer Scope of Control
	Parameters
	Application Development
	Operational Aspects

	Data Sharing (DSaaS)
	Overview
	Key Features.
	Usage Model and Stakeholders
	Service Model and Interaction Dynamics
	Provider/Consumer Scope of Control
	Parameters
	Application Development
	Operational Aspects

	Selective Authentic Exchange (SAEaaS)
	Overview
	Key Features
	Usage Model and Stakeholders
	Service Model and Interaction Dynamics
	Provider/Consumer Scope of Control
	Parameters
	Application Development

	Privacy Enhancing IDM (PIDMaaS)
	Overview
	Key Features
	Usage Model and Stakeholders
	Service Model and Interaction Dynamics
	Provider/Consumer Scope of Control
	Parameters
	Application Development

	Verifiable Statistics (VSaaS)
	Overview
	Key Features
	Usage model and stakeholders
	Service Model and Interaction Dynamics
	Provider/Consumer Scope of Control
	Application Development

	Infrastructure Auditing (IAaaS)
	Overview
	Key Features
	Usage Model and Stakeholders
	Service Model and Interaction Dynamics
	Provider/Consumer Scope of Control
	Parameters
	Application Development

	Encryption Proxy (EPaaS)
	Overview
	Key Features
	Usage Model and Stakeholders
	Service Model and Interaction Dynamics
	Provider/Consumer Scope of Control
	Parameters
	Application Development

	Big Data Anonymization (BDAaaS)
	Overview
	Key Features
	Usage Model and Stakeholders
	Service Model and Interaction Dynamics
	Provider/Consumer Scope of Control
	Paramters
	Application Development
	Operational Aspects

	Summary and Conclusions
	Bibliography
	Toolkit Overview
	Secure Object Storage Tool (SECSTOR)
	Flexible Authentication with Selective Disclosure Tool (FLEXAUTH)
	Verifiable Data Processing Tool (VERIDAT)
	Topology Certification Tool (TOPOCERT)
	Data Privacy Tool (DATAPRIV)

	Threat Analysis Results
	Threats for Secure Archiving
	Tampering
	Denial Of Service
	Spoofing
	Information Disclosure
	Repudiation
	Elevation Of Privilege

	Threats for Secure Sharing
	Tampering
	Denial Of Service
	Spoofing
	Information Disclosure
	Repudiation
	Elevation Of Privilege

	Threats for Encryption Proxy
	Denial of service
	Elevation Of Privilege
	Information Disclosure
	Repudiation
	Spoofing
	Tampering

	Threats for Privacy enhancing IDM
	Denial Of Service
	Elevation Of Privilege
	Information Disclosure
	Repudiation
	Spoofing
	Tampering

	Threats for Infrastructure Auditing
	Tampering
	Denial Of Service
	Spoofing
	Information Disclosure
	Repudiation
	Elevation Of Privilege

