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ABSTRACT
Cloud-Storage has become part of the standard toolkit for enterprise-
grade computing. While being cost- and energy-e�cient, cloud
storage’s availability and data con�dentiality can be problematic.
A common approach of mitigating those issues are cloud-of-cloud
solutions. Another challenge is the integration of such a solution
into existing legacy systems. �is paper introduces the Archistar
Backup Proxy which allows integration of multi-cloud storage into
existing legacy enterprise computing landscapes by overloading the
industry-standard Amazon S3 protocol. �e paper provides multi-
ple lessons-learned during implementation and concludes with a
performance evaluation with traditional backup solutions utilizing
redundant remote storage.
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1 INTRODUCTION
Cloud storage has become a commodity technique, commonly used
by companies to dynamically outsource their data storage onto
third-party servers. Bene�ts include increased agility leading to de-
creased monetary costs, access to managed storage without having
to employ storage specialists as well as improved o�-site disaster
recovery. Drawbacks are the increased dependency upon third-
parties, vendor lock-in, loss of data sovereignty and privacy as well
as service-level agreements that do not allow contractual enforce-
ment of storage availability and achieved performance.

While companies would like to reap the monetary bene�ts, data
con�dentiality issues prevent cloud adaption, esp. with the new,
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potentially existence-threatening, �nes contained in the upcoming
General Data Protection Regulation (GDPR) of the European Union.
Companies outsourcing their sensitive backup data require strict
data con�dentiality as well as resilience in case of partial cloud
failures.

A new approach that allows to mitigate some of those problems
is the cloud-of-cloud[2] or multi-cloud paradigm. Storage systems
that ful�ll this technique disperse their data redundantly over multi-
ple independent storage clouds, thus limiting the damage potential
of each single storage provider. Furthermore, if secret sharing is
used for creating the split-up data, increased data con�dentiality
can be gained and traditional security assumptions—such as math-
ematical strength of encryption algorithms—are replaced with a
non-collusion assumption between the involved storage providers.

�e contribution of this paper is twofold. On the one hand,
we will introduce the Archistar-S3-Proxy that allows transparent
multi-modal data distribution between multiple public clouds. We
embrace and enhance existing storage technologies and protocols to
allow for integration into existing enterprise storage systems. �e
basic concept of the Archistar Backup Proxy is: to accept archive
data from a backup client or server through the Amazon Simple
Storage System (S3) interface, apply secret-sharing to enforce data
con�dentiality, integrity and availability, and to �nally store the
encrypted data upon multiple cloud storage providers.

On the other hand, we report signi�cant performance improve-
ments of the Archistar-Smc cryptographic library, which was used
to build the proxy and is the most versatile and integrated crypto-
graphic secret sharing library available in Java. Archistar-Smc
is part of the cryptographic toolkit[22] developed in the PRIS-
MACLOUD project[21] and actively maintained by AIT.

�e further layout of this paper is as follows: section 2 gives a
rough overview of secret-sharing algorithms and existing multi-
cloud storage solutions. Section 3 describes the design choices and
high-level architecture of Archistar-S3-Proxy; section 4 highlights
challenges, limitations and their solutions as well as performance
�ndings discovered during implementation. Section 5 concludes
this paper with a short description of our �ndings as well as teasing
contemporary and future work.

2 RELATEDWORK
Secret-sharing is the technique utilized by the Archistar Proxy to
split up data into multiple fragments. Clients will interact with the
proxy through a selected storage protocol. Finally, we will give a
typical example of a storage system utilizing the cloud-of-clouds
approach.

An important aspect of a so�ware system is the adversary model
that the system was designed with. Figure 1a shows a typical cloud
backup scenario: multiple backup clients and servers communicate
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with the backup proxy which, in turn, communicates with multiple
cloud storage providers at the bo�om. A simpli�ed version of the
data-�ow can be seen in Figure 1b.

In a traditional backup system, everything but the backup client
is trusted. �e backup servers and storage gateways are fully
trusted; the backend storage servers are assumed to behave non-
malicious, e.g., stored data might be corrupted due to bitrot but not
be maliciously altered or extracted.

�e Archistar backup proxy assumes that, in addition to the
clients, the backend storage can fail arbitrarily too. Recent cloud
outages and breaches12 have shown that this a reasonable assump-
tion. While the Archistar proxy enforces correct behaviour of
backup servers, it cannot verify the transmi�ed plain-text data for
correctness. To improve this situation a versioning scheme with the
capability to reset to older versions is provided. Archistar assumes
the existence of a single proxy; if scaling mandates the usage of mul-
tiple proxies, distribution schemes such as Paxos[18] or RAFT[24]
can be utilized. If each of those proxies cannot be fully trusted,
complex and expensive protocols such as PBFT[6] can be utilized
to implement byzantine fault-tolerant systems.

We assume that data-in-transit is protected by state-of-the-art
security mechanisms, i.e., TLSv1.2 with data con�dentiality and
integrity protection. Ideally, for long-term secure storage, the con-
nections would be secured by ITS secure mechanisms like quantum
communication[25], however, this technology is very expensive
and can only cover limited distances. It is also limited in rate which
requires computational secure hybrid solutions [23] to be used in
storage scenarios anyways.

2.1 Secret-Sharing
Secret-sharing describes a family of algorithms that allow to split
up plain-text data into n parts, k of which are needed to reconstruct
the original data. �is de�nition implies that k < n; if k ≤ n then
n − k missing parts can be tolerated during reconstruction. �e
archetypal secret-sharing algorithm is Shamir’s Secret Sharing[28].
While introducing a high dependency upon generated random
numbers as well as signi�cant storage overhead this algorithm is
information theoretical secure, i.e., even an adversary with un-
limited processing power can only randomly guess the plain-text
data. Another o�en used algorithm is Rabin[26] which increased
information safety by adding redundancy during data distribution.
While not improving con�dentiality it allows for highly e�cient
data dispersal. Krawczyk combined both schemes in [16]. Plain-
text data is symmetrically encrypted using a generated secret-key.
�e encrypted data is dispersed using Rabin while the secret key is
distributed using Shamir’s Secret Sharing. While this only provides
computational security, this approach yields high storage e�ciency.
Table 1 gives an overview of the discussed algorithms and their
characteristics.

2.2 Storage Protocols
Storage systems can be classi�ed according to the data access meth-
ods they are providing to their clients. Most storage interfaces fall

1Gitlab data loss: h�ps://about.gitlab.com/2017/02/01/gitlab-dot-com-database-
incident, accessed 06/12/2017.
2Amazon S3 outage: h�ps://aws.amazon.com/message/41926/

Table 1: Characteristics of selected secret-sharing algo-
rithms. Storage overhead is noted as factor based upon
the original storage size l . n is the total amount of servers
needed, k denotes howmany fragments are needed to recon-
struct the original data. An overhead factor of 1.0 denotes
that the resulting share size is the same as the original data,
i.e., that there is no overhead.

Algorithm Con�dentiality Storage Overhead
Shamir ITS n
Rabin n/k
Krawczyk computational n/k + sizekey ∗ n/l

into one of the following classes: remote �le systems, block storage
or key-value stores3. In addition systems can be classi�ed due to the
CAP theorem[9]—denoting Consistency, Availability and Partition
Tolerance. �e theorem states, that a system can ful�ll a maximum
of two out of three of those parameters.

Remote �le systems provide hierarchical data storage with high
semantics[27]. In case of cluster �le systems parallel write-operations
by multiple clients while keeping strong consistency are commonly
supported. �is high feature level is bought by complexity.

Block-level storage o�ers a virtual block device, e.g., a distributed
hard-drive. Data representation is not �les, but �xed-size storage
blocks. It is the client’s responsibility to provide a �le system with
all inherent complexities on top of the virtual block device. �is
reduced feature allows for increased simplicity and thus low la-
tency. In addition the block-level storage is well suited for data
deduplication on the lowest layer. �is improves storage e�ciency
but has the inherent drawback of reduced data safety due to re-
duced redundancy as well as a potential negative con�dentiality
impact[13].

Key-Value stores provide functionality akin to non-hierarchical
dictionaries[11]. Similar to block-based storage systems they utilize
unique keys for identifying data, in contrast to block-storage they al-
low storage of arbitrarily sized values. �ey focus upon availability
and horizontal scale-out, i.e., sharding, and have become prominent
for cloud applications. �e foremost known key-value network pro-
tocol is the industry-standard Amazon S3 protocol which is served
over HTTPS.

2.3 Multi-Cloud Storage
Fault-tolerant cloud storage is a well researched area[30]. Common
distinctive features range from concurrent multi-client support,
concurrent updates, used consistency model, data deduplication,
fault tolerance and cloud storage provider requirements.

RACS[1] utilizes erasure-coding to distribute data over multiple
storage clouds. �eir main goal is to prevent vendor lock-in and
to achieve high availability; privacy concerns are not discussed. It
mimics the Amazon S3 interface for communication with its clients.
If a single RACS installation becomes a performance bo�leneck,
distributed RACS can be deployed: it uses Apache Zookeeper[15]

3Please note that we are focusing upon �le-based storage systems and are not analyzing
structured storage systems such as relational databases.
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for message ordering/storage and is thus a crash-fault tolerant
solution.

�e HAIL system[5] focuses upon high-availability and integrity
protection within the cloud; data privacy is not of primary concern.
To achieve high availability, data is distributed (using erasure codes)
upon multiple clouds. Data stored upon a single server is also
redundantly stored to increase its resistance against bitrot. To verify
the availability and correctness of data, a proof-of-retrievability
protocol based upon active servers has been developed.

DepSky[4] o�ers an object-store interface on top of passive stor-
age clouds. Its data objects utilize cryptographic hashes for in-
tegrity control; short-time version numbers provide for concurrent
updates. As no active server components can be used, the system
cannot cope with malicious writers. Multiple concurrent writers
are supported through client-side locks: this allows for obstruction-
free, but not wait-free, operation. Cloud providers are allowed to
fail in Byzantine ways. Con�dentiality is optionally supported by
secret-sharing techniques in the DepSky-CA variant.

Fork-based systems[19] achieve consistency by exploiting ver-
sion information. Multiple clients update the server-side data and,
through that, create potential con�icting change histories. If a ma-
licious change has been detected, clients are responsible to rollback
to a known good version. �is approach is well suited if clients
can detect failures, are able to perform the rollback operation and
incorporating potential malicious data can be coped with.

Another potential solution is the combination of a byzantine
fault-tolerant distribution algorithm with erasure-coding[10]. Byzan-
tine faults are arbitrary faults, well suited to model, e.g., a malicious
a�acker as well as bit-rot due to erroneous hardware. A drawback
of PBFT-based solutions is the dependency upon active servers,
the need for servers communicating with each other as well as the
high message count and round-trip overhead. Using erase-codes
does not provide for data con�dentiality; a natural evolution of
this approach is the addition of secret-sharing[20]. �e adversary
model for such a system becomes complex, esp. if malicious clients
should be able to be coped with[12].

3 ARCHITECTURE
�e Archistar Backup Proxy uses secret-sharing to split up archive
data—provided by an existing backup solution—into encrypted
shares and then distributes those shares upon multiple potentially
untrusted cloud storage providers. A simpli�ed representation of
our system architecture is shown in Figure 1a, a simpli�ed version
of the data�ow is shown in Figure 1b.

We target the enterprise backup sector, this leads to multiple
simpli�cations for the resulting so�ware architecture. Enterprise
backup clients typically connect to a single backup server which
used to store the clients’ data upon tape drives but recently have
begun to exchange those tape decks with cheap online cloud stor-
age. Existing Enterprise Backup Solutions commonly support the
Amazon S3 protocol for backend storage. By providing an emula-
tion of this protocol, the Archistar Backup Proxy becomes a drop-in
network component. While this improves the interoperability, the
situation is not perfect: not all backup solutions utilize the same
Amazon S3 subset.

�e resulting system is inherently single-user: while multiple
clients connect to the backup server, just a single backup server will
connect to the Archistar Backup Proxy. While the backup proxy
itself might provide multi-user support to its clients, the overall sys-
tem is still a single-client system with the backup proxy being the
single storage client. �e single-user nature of the system allows
to delegate large parts of the user authentication and authorization
problem to the backup server so�ware. As we target real-world
deployments, we cannot assume active servers with code-execution
capabilities. �is reduces our server-side options as many storage
systems mandate active servers with communication channels be-
tween them, e.g., PBFT-based solutions[10], or active servers with
user-supplied code, e.g., fork-consistency based systems.

A high-level bene�t of the backup storage sector is its focus
upon bandwidth. In contrast, desktop-level interactive applications
are forced to focus upon latency. As we can thus allow for higher
latencies, this enables easy implementation of batching and caching,
thus further improving the achieved bandwidth.

As mentioned, we have chosen the Amazon S3 protocol for
client interactions due to its mass market adaption. We also sup-
port the Amazon S3 protocol for interaction with our backend
storage providers but o�er additional in-memory and local-storage
providers for testing purposes. �e concrete storage driver imple-
mentations are abstracted behind an interface, so supporting other
cloud providers or modes of storage is a ma�er of implementing few
very basic methods. Apart from utility functions — for connecting
and disconnecting, returning status information — one only needs
to provide methods for storing, retrieving, and deleting binary ob-
jects. As the proxy server keeps its own metadata within its index,
no methods for listing directories or retrieving �le stats are needed.

�e index itself is a container for �le data, i.e., a �le’s original
name, size, SHA-256 and MD54 hashes, modi�cation date, con-
tent type, used secret-sharing algorithm and metadata. In addition,
�le data includes information on where its secret-shared parts are
stored. �is is needed, as we store each under a separate identi�er
to hamper data analysis. Apart from that, each index can — depend-
ing on the versioning con�guration — contain a reference to its
predecessor. As each index includes information about all available
�les and directories, this allows for implicit versioning of all data.
To reduce storage overhead, the number of stored versions, reach-
ing from zero to in�nity, can be con�gured through the backup
server’s con�guration.

Secret-sharing is utilized to distribute the index upon the avail-
able storage clouds. It is therefore only identi�ed by its unique
random identi�er5; to identify the current index, a special �le with
a �xed name is used akin to a super-block in �lesystem design. In
order not to have to retrieve the current index on every operation
and thus spare round-trips, it is cached locally. Storage operations
that do not manipulate actual �le data, are thus “cheap”. If we as-
sume single-proxy operation, we do not have to check if our locally
cached index and the server-side index are identical. Listing all
stored �les, or retrieving the metadata of one speci�c �le, does not
entail any backend operations. �is is paramount for performance,

4�e MD5 hash is needed for compatibility with the Amazon S3 protocol.
5Other than regulars �les though, all secret-shared parts of the index have the same
identi�er upon all used storage providers.
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(a) High-level network system overview.
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(b) Example data-�ow from backup client.

Figure 1: High-Level network system overview and example data-�ow from backup clients to the cloud storage servers.

as some clients issue a surprisingly high number of such requests be-
fore and a�er each actual �le operation. In addition this allows the
backup server to be�er cope with the potential high-latency during
accessing networked Amazon S3-compatible storage servers.

3.1 �eoretical Secret-Sharing Performance
�e performance overhead of the Archistar Proxy system can be
measured through latency, minimal number of needed servers,
storage overhead and throughput. Given a storage system that
must be able to cope with f faulty storage locations, traditional
cloud storage systems that provide redundant fault-tolerant storage
must distribute the original data upon (at least) k = f + 1 servers.
�e storage overhead is thus f + 1.

Erasure-Coding has a similar amount of needed servers, but the
storage-overhead per server is reduced by a factor of k .

With information-theoretical secure secret-sharing there is the
additional condition that collaborating storage providers should
not be able to reconstruct the original data: k = f + 1, n − k > f .
If we transform the la�er this leads to n = 2f + 1. Table 2 shows
the overhead results for di�erent values of f . It can be seen that
while secret-sharing increases the amount of minimal servers, the
overall storage overhead depends upon the chosen secret-sharing
algorithm. When information-theoretical secret-sharing is used, the
overhead is higher than a comparable redundant backup solution.
When computational secure secret-sharing is used, it is lower.

Another important metric for backup systems is their throughput.
�e achieved (simpli�ed) throughput is the minimum of the incom-
ing (local) network throughput, the secret-sharing engine’s through-
put as well the achievable outgoing (public) network throughput.
We assume the internal network to be of in�nite capacity and that
our baseline — a traditional backup solution that uses simple re-
dundancy — saturates the available outgoing network bandwidth.
If we assume a scenario of f = 1, i.e., the user wants at least min-
imal safety from redundancy, then the impact upon throughput
should be the ratio of secret-sharing overhead divided by the tradi-
tional overhead. When using the estimated overhead from Table 2,
it can be seen that information-theoretical secure secret-sharing

would decrease the throughput, while computational secure secret-
sharing would actually improve it. �e throughput of the used
secret-sharing engine thus becomes the limiting factor. As a refer-
ence, Table 4 shows the measured performance of our secret-sharing
library upon multiple platforms.

3.2 Availability Model
In reliability theory an n-component system that works if and only
if at least k of the n components work is called a k-out-of-n:G
system. �e presented storage system is exactly implementing such
a structure in a multi-cloud se�ing which lets us directly apply
some results from reliability theory in our availability analysis.

In particular, the reliability R(k,n) of a k-out-of-n:G system with
i.i.d. components, i.e., components which are independent of each
other, is equal to the probability that the number of working com-
ponents is greater than or equal to k . In particular the reliability is
calculated as follows.

R(k,n) =
n∑
i=k

(
n

i

)
piqn−1 (1)

�e k-out-of-n is a generic model for adding fault tolerance to
systems by increasing redundancy, which is exactly what we are
doing with secret sharing in the Archistar system, if we leave the
security aspects aside for this treatment.

If we compare the di�erent se�ings presented in the previous
section with the reliability model we get the following results. For
the case of data replication we have k = 1, which leads to the
analogous of a parallel system in the reliability model and R(1,n) =
1 −∏n

i=1(1 − pi ) = 1 − (1 − p)n . For the cases of perfectly secure
(ITS) secret sharing and computational secret sharing the reliability
parameters can �exibly be adjusted through encoding between
1 ≤ k ≤ n, which leads to a non trivial k-out-of-n system if k is
selected accordingly (k > 1 and k < n). However, if the redundancy
is fully removed for security reasons (k = n), the systems becomes
a simple series system with R(n,n) = ∏n

i=1 pi = pn . �us, from a
reliability standpoint, both secret sharing variants provide the same
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Table 2: Comparison of minimal server amount and storage overhead between di�erent storage schemes. �e baseline for the
overhead is given as a factor based upon the original data amount.

Faulty Server Amount Storage Overhead
Servers Replication Secret-Sharing Traditional

Replication
Computational
Secret-Sharing

Perfect (ITS)
Secret-Sharing

f = 1 n = k = 2 k = 2,n = 3 2 1.5 3
f = 2 n = k = 3 k = 3,n = 5 3 1.66 5
f = 3 n = k = 4 k = 4,n = 7 3 1.75 7

level of reliability, although providing di�erent levels of security
and storage overhead.

Now, if we use the previous treatment to model the availability
of our solution, the basic characteristics can be directly applied. As
we show here, we can also use this approach to design our system
based on availability criteria we have to ful�ll for the data stored.
Enabling this SLA tailoring via multi-cloud con�gurations is very
a�ractive, because the standard cloud storage market provides only
limited �exibility in the con�guration of service level agreements
(SLA). In many cases main design criteria like availability goals
are not even clearly stated in provider SLA6, nor is there any real
compensation foreseen in case of violation, except for some minor
service credits. In fact, serving standardized SLAs to customers
is a major feature of cloud computing which helps to enable the
elasticity and self-service capabilities the customers want to have.
However, as a downside of this approach, it is very di�cult for
customers to �nd o�erings which perfectly �t their particular needs
and almost impossible to negotiate special conditions.

Archistar is trying to solve this problem in a di�erent way, i.e., by
le�ing the customer design a storage system according their needs
and requirements as a fault tolerant composition of di�erent cloud
o�erings. In particular, the k-out-of-n paradigm is used to design
systems which can theoretically provide arbitrary high levels of
availability. Availability classes are typically given as number of
leading nines of the availability value, i.e., a “three nines” avail-
ability means 99.9% which corresponds to a downtime of 8.76h per
year or 43.8min per month. We used this type of availability classes
to demonstrate the theoretical values we can reach in our system
with reasonable number of storage nodes.

In table 3 we show the calculated availability classes for di�erent
con�gurations of n and k , whereby an overall availability of 98%
(p = 0.98) is assumed for the individual cloud storage o�erings
used to store the data fragments. It is easy to see, that for all
typical requirements con�guration parameters exist. �e system
is giving the cloud customer much more �exibility and enables
him to design his own SLA for a virtual Archistar storage service
with respect to availability, con�dentiality and integrity on top of
existing cloud o�erings. �is can also help to speed up and improve
the cloud migration process in general[14]. Furthermore, if the
con�gurations would be matched against cloud services databases,
the best provider o�erings can be selected to also get a price optimal
solution. Nevertheless, a more detailed model also considering
failure modes like network outages and data loss would be desirable
and is le� for future work.

6e.g. see Amazon S3 service: h�ps://aws.amazon.com/s3/sla/ (accessed 6/17/2017)

Table 3: Number of leading nines for system reliability
R(k,n) for given n and k and a individual storage node reli-
ability of p = 0.98, which is a typical value taken from cloud
storage provider SLA.

n k
1 2 3 4 5 6 7 8 9 10 11 12

3 5 3 1 0 - - - - - - - -
4 7 5 3 1 0 - - - - - - -
5 8 6 4 2 1 0 - - - - - -
6 10 8 6 4 2 1 0 - - - - -
7 12 9 7 5 4 2 1 0 - - - -
8 14 11 9 7 5 3 2 1 0 - - -
9 15 13 10 8 6 5 3 2 1 0 - -
10 17 14 12 10 8 6 5 3 2 1 0 -
11 19 16 14 11 9 8 6 4 3 2 1 0
12 20 18 15 13 11 9 7 6 4 3 2 1
13 22 19 17 15 12 11 9 7 5 4 3 2
14 24 21 18 16 14 12 10 8 7 5 4 3
15 25 23 20 18 16 14 12 10 8 7 5 4

3.3 Backend Concerns
One of our backup proxy’s goals is interoperability. �us we not
just provide a standard S3 interface to our clients, but also must
allow for multiple backend storage options. To achieve this, our
design is based on the lowest sensible common denominator. For
the most part, this is not a signi�cant limitation—our requirements
are modest, and major cloud providers do or will soon provide
a matching set of features. One notable exception is Amazon’s
provided data consistency model for its operations. Its eventual-
consistency model is far weaker than the strong-consistency model
provided by other cloud providers. As a consequence, we can not
support parallel data operations by multiple proxies on shared sets
of stored data. A single proxy installation is therefore intended to
only ever work on a set of stored data that does not overlap with
that of any other proxy.

A good example for an advanced but well-supported utilized
feature is metadata management. Almost all cloud storage providers
provide (under various names) operations on user-de�ned metadata
that can be manipulated separately from the object to which they
are a�ached. �ough the concrete limitations regarding size and
shape di�er from provider to provider, our requirements in this
regard are modest enough that all the �le-level metadata needed
for our secret sharing engine can be stored in that way.
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3.4 Client-Facing Concerns
�e Archistar backup proxy provides a subset of the industry-
standard Amazon S3 protocol. �e Amazon S3 protocol is a RESTful
HTTP-based key-value storage protocol. Data is identi�ed by non-
hierarchical unique alpha-numeric keys; data itself is assumed to
be a binary large object. To be�er implement a �lesystem-like
interface, keys can be grouped by a common pre�x — this allows
to emulate directories by using a full path as key. Each object can
contain both prede�ned, e.g., user and access information, and
user-de�ned meta-data.

To allow upload of large �les through the HTTP a multi-part
upload functionality is provided. �is introduces a transaction-like
process, within which a client can upload multiple smaller parts of
a �le and where during the �nalization of the transaction, those
parts are combined to the �nally stored object.

We implement basic authentication using statically con�gured
credentials against which incoming client requests are authenti-
cated. We were not able to implement the sophisticated autho-
rization features of S3 as this would require either deep access
to Amazon customer data, or replicating its Identity and Access
Management (Amazon IAM) infrastructure. As this is a common
problem with Amazon S3-compatible implementations, this lack is
not serious — all of the backup servers/clients which we have so
far integrated, utilized only a small part of the S3 interface.

A bene�t of using the S3 protocol is that, due to it being a
key/value store, deduplication is relatively easy[29]. Deduplication
is an important feature as many backup clients perform UNIX-style
atomic �le updates/uploads by initially uploading a temporary �le,
then making a copy of it under the �nal name, and �nally deleting
the temporary �le. Deduplicating here has the obvious bene�t that
only the initial upload �le operation is actually being performed
on a data-level, while the subsequent operations only modify data
within the — potentially cached — index. �is reduces round-trips
and thus improves performance.

One feature that the S3 protocol o�ers and will be supported by
our backup proxy is versioning. Already it is possible to con�gure
the proxy so that �les are never actually deleted, or only a�er
certain criteria are met. �e open question is whether, and if so, how
to expose this functionality via S3. �e straightforward solution
would of course be to integrate it with the versioning facilities of
S3, but not many client actually use this feature. For most clients,
S3 is just one of many supported backends; they therefore avoid
depending too much on S3-speci�c features, or even on features
that are speci�c to cloud key/value stores.

4 IMPLEMENTATION AND EVALUATION
�is section describes �ndings that were discovered during imple-
mentation. In contrast to the “Architecture”-�ndings, these �ndings
are more concerned with mechanics and protocol choices.

4.1 S3 Integration Challenges
During implementation of the proxy prototype, we discovered sig-
ni�cant negative performance interactions between our initial data
representation and the Amazon S3 protocol, leading to decreased
performance and scalability.

As mentioned before, S3 is a key/value store with an assumed
�at, i.e., non hierarchical, key space whose internal value structure
is orthogonal to the protocol. Sadly, this is not what clients expect:
when dealing with �les, instead of a �at name space, one would
probably like to have directories. For handling large �les, incre-
mental up- and download facilities would be useful. S3 provides
for this: in the case of directories, this is done by treating directory
names as “common pre�xes”. For incremental uploads of large
�les, there is a special “Multipart Upload” operation. As for down-
loading big �les, S3 makes use of byte-wise access through HTTP
Range headers7. As our security model assumes that we only serve
(and integrity-check) whole �les, this introduces a payo� between
security and performance — either we retrieve, reconstruct, and
serve just the requested part of the �le but are then not able to
verify its integrity, or we can retrieve the whole �le, check it, and
serve only the requested part. �is is further exacerbated by the
fact that client can — via the Range headers — specify arbitrary
ranges to be retrieved. �e size of the “chunks” in which the �le is
retrieved cannot a priori be determined and thus, no check-sum be
pre-calculated. A 150MB �le might be retrieved in 2 chunks, or in
16.

�is does not only impact performance. Our current prototype
implementation is based on Java byte arrays for incoming data,
processing as well as for outgoing data. �is has obvious negative
implications for memory usage, but also less obvious implications
for stability. For every l bytes of input, at least n + 1 byte arrays of
length l have to be allocated by the Java virtual machine. In typical
use, allocations do not fail, but in principle, the JVM can throw an
OutOfMemoryError at any time — as we have found, frequently
accessing �les of moderate size such as 50 Megabyte are sometimes
enough to trigger this condition. �is happens exactly when a client
sends multiple requests for di�erent ranges of the same �le.

4.2 Secret-Sharing Engine Performance
When analyzing the sequential single-thread performance of our
data-processing engine, the typical culprits can be found: �nite �eld
multiplication and random number generation. Speeding up �nite
�eld multiplication is an intensively researched subject, but for our
speci�c purposes of bit �elds of width 8, we found the approach of
using lookup tables more than adequate. A high random number
generation rate is paramount, because when using Shamir’s secret-
sharing algorithm, for every byte of input, k−1 bytes of randomness
must be generated. �e availability of a high-performance hardware
random number generator is thus highly recommended. �e single-
thread performance of our secret-engine can be seen in Table 4.

Our current prototype uses a sequential and single-threaded
secret-sharing engine. To improve performance we are o�ering
a �rst version of a parallelized erasure coding algorithm. We are
investigating the potential of spli�ing up the workload upon multi-
ple CPU cores, esp., to be be�er suited for operation on dedicated
network hardware which o�en provides many low-performance
CPU cores. Rabin’s algorithm allows for easy optimization, as each
of the n output shares can be generated on a di�erent core because
no synchronization between them is necessary. Shamir’s algorithm
depends upon k − 1 generated random bytes for every byte of input,

7Speci�ed in RFC 2616 §14.35, current version: RFC 7233.
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Table 4: Single-Core throughput upon plaintext-data of dif-
ferent secret-sharing algorithms on di�erent Intel CPUs
with n = 4,k = 3, measurements in kilobyte/second. �e
Intel i5 is a good example of a middle-range Desktop CPU
while theAtomC2758 is typical for an embeddedhigh-range
CPU.

CPU Speed Algorithm Split-Up Combine
i5-4690K 3.5GHz Shamir 42533.7 54179.9
C2758 2.4Ghz Shamir 9212.8 10790.3
Exynos A9 1.7GHz Shamir 3400.6 3940.7
ARM A53 1.2Ghz Shamir 1695.1 2034.9
i5-4690K 3.5GHz Rabin 123746.2 129211.4
C2758 2.4Ghz Rabin 28603.4 26056.0
Exynos A9 1.7GHz Rabin 9915.3 10559.4
ARM A53 1.2Ghz Rabin 5102.1 5346.6
i5-4690K 3.5GHz Krawczyk 79534.0 80313.7
C2758 2.4GHz Krawczyk 17754.7 16828.3
Exynos A9 1.7GHz Krawczyk 6626.8 6813.0
ARM A53 1.2Ghz Krawczyk 3591.4 3773.0

so a parallel implementation would either have to pre-generate
the extra coe�cients, or synchronize their generation across multi-
ple threads. Preliminary performance numbers for a parallelized
Rabin can be seen in Table 5. Please note, that we are currently
parallelizing up to n (maximum number of shares) threads — in
our test-case, the embedded Intel Atom processor would o�er more
cores than our maximum number of shares, thus no full utilization
of the processor cores is achieved. �ere is a slight performance
hit when the multi-threaded code is run on a single-core processor:
this is grounded within the initial setup overhead of the multi-
threaded code. To get the best performance, two separate versions
of the library (or instantiations within the library) for single- and
multi-core usecases might be advantageous.

�e speed-up for Rabin on a quad-core was around the expected
factor of four. Krawczyk is a combination of Shamir, Rabin and
symmetrical encryption. �e secret-sharing key is shared using
Shamir, the original data is encrypted using a traditional symmetric
encryption and then shared with Rabin. If the existing symmetric
encryption library (BouncyCastle in our case) scales as well as our
new parallelized Rabin code, then Krawczyk should also improve
around a factor of 4. As our empirical tests have shown, a factor of
2 is achieved. �is indicates that the existing symmetric encryption
engine also has become a bo�leneck with our new code. Future
research into alternative cryptographic engine as well as into Java
9 (which improves hardware support for cryptographic directives
prevalent in modern processors) is planned.

Another possibility is to split the input across its length. In
that case, the problem becomes the assembly and ordering of the
generated output. Currently, this is feasible as both input and
output bu�ers are byte arrays. Parallelization can be achieved by
computing indices within those arrays. Alas, as mentioned before,
byte arrays are not a scalable solution. �erefore, we will switch to
a stream-based implementation, which renders this parallelization
approach infeasible.

Table 5: Preliminary performance (Version a8a344b) with
multi-core enabled Rabin Data Dispersal. As Rabin is also
used by Krawczyk, its performance should also improve.
Please note, that currently a maximum number of n threads
is used. �e tested Atom C2758 board o�ers 8 cores, so it is
not utilized to the maximum of its abilities.

CPU Speed Algorithm Split-Up Combine
i5-4690K 3.5GHz Shamir 53753.3 52378.0
C2758 2.4Ghz Shamir 8192.0 7881.5
Exynos A9 1.7GHz Shamir 6917.8 3932.0
ARM A53 1.2Ghz Shamir 3502.4 2056.9
i5-4690K 3.5GHz Rabin 694237.3 124498.5
C2758 2.4Ghz Rabin 99417.5 26072.6
Exynos A9 1.7GHz Rabin 67590.8 10529.6
ARM A53 1.2Ghz Rabin 40634.9 4395.2
i5-4690K 3.5GHz Krawczyk 167868.9 79844.1
C2758 2.4GHz Krawczyk 32507.9 16862.9
Exynos A9 1.7GHz Krawczyk 16430.0 6949.4
ARM A53 1.2Ghz Krawczyk 9669.5 3765.1

Table 6: Impact of Processor Architecture and di�erence in-
coming data sizes upon Rabin throughput. Multi-threaded
algorithm used, all Values in kByte per Second.

Data Size Intel Core i5-4570 ARM A9
Split-Up Combine Split-Up Combine

4 kB 117028.6 84553.6 39309.0 9992.7
64 kb 481882.4 121904.8 74744.5 10890.7

128 kb 460224.7 123373.5 76560.7 10922.7
512 kb 630153.8 124121.2 65958.1 10873.4

1024 kb 650158.7 123746.2 107789.5 10870.5
2048 kb 660645.2 124498.5 111304.3 10884.9
4096 kb 620606.1 124878.0 111404.3 10873.4

For further optimization, we performed pre-processing of con-
stant factors for common operations. E.g., when sharing a secret,
for every generated output share, all multiplications are performed
with the same factor. We are currently investigating another ex-
ample of preprocessing: when reconstructing a secret, a decoder
matrix has to be generated — instead of using generic matrix multi-
plication we could decompose and simplify the matrix.

When testing multiple input �le sizes, we found that a block size
of 4 Kilobyte produced signi�cantly reduced performance. With
larger input sizes, the performance was generally constant on the
Intel Core i5 CPU. On passively cooled embedded devices (ARM as
well as Intel Atom processors) the power- and thermal management
prevented the creation of reproducible performance benchmarks.
Future research in to the power consumptions and thermal impact of
di�ernet algorithms might be needed. An overview of the recorded
throughput values can be seen in Table 6.
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5 FUTUREWORK AND CONCLUSION
We presented the Archistar Backup Proxy that allows integration of
secret-sharing multi-clouds into existing legacy enterprise storage
systems. We addressed the common belief that secret-sharing tech-
niques are problematic for both storage overhead and throughput.

In future work, we hope to increase the achieved bandwidth
through the mentioned secret-sharing engine improvements. An-
other future work-item is a detailed performance comparison with
competing solutions such as DepSky[4] and byzantine-fault tol-
erant active solutions. Feature-wise, �rst a�empts of integrating
private information retrieval (PIR[7]) and remote data checking
(RDC[3]) are underway.

Furthermore we will integrate novel veri�cation protocols[8, 17]
to increase the systems resilience and security. �e protocols have
been speci�cally designed for Archistar and with with e�ciency in
mind, i.e., for large distributed storage of unstructured data.
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