
Overview of Verifiable Computing Techniques
Providing Private and Public Verification

D5.8

Document Identification

Date May 4, 2016

Status Final

Version 1.0

Related WP WP5 Document
Reference

prismacloud.eu

Related
Deliverable(s)

Dissemina-
tion Level

PU

Lead
Participant

TUDA Lead Au-
thor

Denise Demirel (TUDA)
Lucas Schabhüser (TUDA)

Contributors Johannes Buchmann (TUDA)
Denise Demirel (TUDA)
David Derler (TU Graz)
Lucas Schabhüser (TUDA)
Daniel Slamanig (TU Graz)

Reviewers Daniel Slamanig (TU Graz)
David Derler (TU Graz)
Thomas Gross (UNEW)

https://prismacloud.eu/

D5.8: Overview of Verifiable Computing
Techniques Providing Private and Public

Verification

Johannes Buchmann†, Denise Demirel†, David Derler‡, Lucas Schabhüser†,
and Daniel Slamanig‡

† Technische Universität Darmstadt, Germany
‡ Graz University of Technology, Austria

Abstract. In this deliverable, we investigate the state-of-the-art in cryptographic approaches
to verifiable computing. Verifiable computing encompasses methods that allow to delegate the
computation of a function f on outsourced data x to third parties, such that the data owner
and/or other third parties can verify that the outcome y = f(x) has been computed correctly
by the third party. Thereby, approaches that are of prime interest are those providing an ef-
ficient verification process, i.e., it requires significantly lower computational costs to verify the
correctness of the result than to perform the computation locally. In addition to presenting on
overview of the state-of-the-art, we also highlight some interesting directions for future work.

This document is issued within the frame and for the purpose of the Prismacloud project. This project
has received funding from the European Union’s Horizon 2020 Programme for research, technological
development and demonstration under grant agreement no. 644962.

This document and its content are the property of the Prismacloud Consortium. All rights relevant to
this document are determined by the applicable laws. Access to this document does not grant any right
or license on the document or its contents. This document or its contents are not to be used or treated
in any manner inconsistent with the rights or interests of the Prismacloud Consortium or the Partners
detriment and are not to be disclosed externally without prior written consent from the Prismacloud
Partners.

Each Prismacloud Partner may use this document in conformity with the Prismacloud Consortium
Grant Agreement provisions.

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Executive Summary

Cloud computing is an increasing trend within IT outsourcing that allows vendors to offer
traditional IT facilities, such as storage and/or computational systems, via the Internet. Clearly,
such a business model brings many benefits and often allows customers to increase efficiency,
flexibility and/or cost efficiency. However, cloud computing also raises many (novel) security and
privacy related issues. This is mainly due to the fact that cloud providers who store and process
data of their tenants cannot be considered fully trustworthy or immune to attacks. Thus, a
very important and relevant research question is how one can outsource data and computations
to a non-trusted third party such that this party can process the data and at the same time
provide guarantees that integrity and confidentiality has been preserved. This question lead to
a new and interesting research field called verifiable computing.

Within Prismacloud, we (among others) aim at developing tools that counter problems related
to integrity, authenticity, and confidentiality in the context of cloud computing. In the field
of verifiable computing, many solutions for different types of computations, e.g., described by
a subset of some programming language like C, using various different approaches have been
presented in recent years. Nevertheless, all existing solutions come with several trade-offs and
so far it is not clear if there is a comprehensive solution that provides both the security and
privacy level needed for sensitive data and the flexibility and efficiency to be used in practice.
One example for such sensitive data are health and medical data of individuals as encountered
within the Prismacloud eHealth use-case.

Thus, the main purpose of this deliverable (D5.8) is to present the state-of-the-art in verifi-
able computing and to analyze to what extent the constructions provide security, privacy, and
efficiency. This allows identifying which approaches are the most promising candidates to be
adapted and potentially improved for our use cases and integrated in the toolbox developed
within Prismacloud.

WP: WP5 Deliverable: D5.8 Page: 1 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Document information

Contributors

Name Partner

Johannes Buchmann TUDA

Denise Demirel TUDA

David Derler TU Graz

Lucas Schabhüser TUDA

Daniel Slamanig TU Graz

History

0.01 2015-10-15
Denise Demirel

structure
Lucas Schabhüser

0.02 2015-11-26
Denise Demirel added schemes based on proofs, FHE, homomorphic
Lucas Schabhüser authentication, specific applications

0.03 2015-11-27 All proof reading, bugfixing

0.04 2015-11-30
Denise Demirel added verifiable computing from attribute based
Lucas Schabhüser encryption

0.05 2015-12-01
David Derler added verifiable computation from functional
Daniel Slamanig signatures

0.06 2015-12-02 All proof reading, bugfixing

0.07 2015-12-03
Denise Demirel added signature based verifiable computing using
Lucas Schabhüser homomorphic encryption

0.08 2015-12-09 All proof reading, bugfixing

0.09 2015-12-14
Denise Demirel abstract, introduction, preliminaries, analysis,
Lucas Schabhüser conclusion, assumptions

0.10 2015-12-15 All proof reading, bugfixing

WP: WP5 Deliverable: D5.8 Page: 2 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Table of Contents

1 Introduction 6

1.1 Roadmap . 6

1.2 Organisation . 8

2 Preliminaries 9

2.1 Verifiable Computation . 9

2.2 Properties of Verifiable Computing Schemes . 10

2.2.1 Security . 10

2.2.2 Privacy . 11

2.2.3 Efficiency . 12

3 Proof Based Verifiable Computing 14

3.1 Interactive Proof Based Approaches . 14

3.2 Interactive Argument Based Approaches . 16

3.3 Non-Interactive Argument Based Approaches . 17

4 Verifiable Computing from Fully Homomorphic Encryption 20

5 Homomorphic Authenticators 22

5.1 Message Authentication Codes . 22

5.1.1 Definitions for Message Authentication Codes 22

5.1.2 Verifiable Computing Schemes Based on MACs 24

5.2 Homomorphic Signatures . 25

5.2.1 Definitions for Homomorphic Signatures 25

5.2.2 Signature Based Verifiable Computing on Linear Functions 26

5.2.3 Signature Based Verifiable Computing for Polynomial Functions 26

5.3 Signature Based Verifiable Computing Using Homomorphic Encryption 27

6 Verifiable Computing Frameworks From Functional Encryption and Func-
tional Signatures 29

6.1 Verifiable Computation from Functional Encryption 29

WP: WP5 Deliverable: D5.8 Page: 3 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

6.2 Verifiable Computation from Functional Signatures 30

7 Verifiable Computing for Specific Applications 32

8 Analysis of the State of the Art 34

9 Conclusion 38

WP: WP5 Deliverable: D5.8 Page: 4 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

List of Tables

1 Used abbreviations . 34

2 Proof Based Verifiable Computation Schemes . 35

3 FHE Based Verifiable Computation Schemes . 35

4 Authenticator Based Verifiable Computation Schemes 36

5 FE and FS based Verifiable Computation Schemes 36

6 Other Verifiable Computation Schemes . 37

List of Acronyms

ABE Attribute Based Encryption
CNF Conjunctive Normal Form
DNF Disjunctive Normal Form
EUF-CMA Existential Unforgeability under Adaptively Chosen Message Attacks
FE Functional Encryption
FHE Fully Homomorphic Encryption
FS Functional Signature
GPU Graphics Processing Unit
HE Homomorphic Encryption
HEA Homomorphic Encrypted Authenticator
MAC Message Authentication Code
NIZKAoK Non-interactive Zero Knowledge Argument of Knowledge
OWF One-Way Function
PCP Probabilistically Checkable Proof
PE Predicate Encryption
PPT Probabilistic Polynomial Time
QAP Quadratic Arithmetic Program
QPP Quadratic Polynomial Program
QSP Quadratic Span Program
SCC Signature of Correct Computation
SNARG Succinct Non-Interactive Argument
SNARK Succinct Non-Interactive Argument of Knowledge
VHE Verifiable Homomorphic Encryption

WP: WP5 Deliverable: D5.8 Page: 5 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

1 Introduction

Due to the increasing popularity and prevalence of cloud computing, there is an increasing
market for solutions that allow to outsource data and computations to the cloud. However,
since the servers performing these computations might be malicious or infected (and can thus
not be fully trusted), it is a desirable feature that clients can verify the correctness of any
outsourced computation. A näıve solution to this problem is to reobtain the outsourced data
from the cloud, check its integrity, and reexecute the computation locally. However, in this
case the client needs to have enough space to store the data and enough power to perform the
computation. This is not a viable solution especially for weak devices such as smartphones, or
huge amounts of data as well as time-consuming computations. Moreover, it negates many of
the benefits of using the cloud in the first place. Thus, an interesting research question is how
verification of correctness of computation can be performed while requiring less computational
work than a local computation and optimally without needing access to the data locally.

The field of verifiable computing aims to give solutions to this problem. Originally, researchers
developed the idea of super-polynomial servers (provers) convincing a computationally bounded
client (verifier) of the validity of some statement in an NP-language using by then rather
theoretical tools such as interactive proof systems [GMR89] and probabilistically checkable proofs
[BFLS91, AS98]. While the application to verifiable computing scenarios have already been
mentioned in very early works, the solutions from these theoretical tools were not suitable
for any practical application. Later, work relaxed these potentially super-polynomial provers
to polynomially bounded provers to obtain (typically more efficient) argument systems and
within the last few years, motivated by the potential of cloud computing, research in making
such approaches practical yielded many different solutions. In 2009, Genarro et al. [GGP10]
provided the first definition of a non-interactive verifiable computing scheme and since then
many solutions for different types of computations using vastly different approaches have been
presented. From these approaches, many have already been implemented and can be termed
nearly practical today1. As this field has significantly grown in the last few years and is still
growing quite fast, this work aims at providing an exhaustive overview of the current state of
the art in verifiable computing. The existing constructions are described and their properties,
e.g., level of security, efficiency, and privacy, are analysed.

1.1 Roadmap

In this work we will be concerned with a setting where a verifier specifies a function f and some
input x and requests a prover to compute y = f(x) and return y to the verifier. If the prover
indeed computed y = f(x) correctly, then the prover should accept y, but otherwise the verifier
should reject y with high probability. In order establish the correctness guarantee, either the
verifier interactively asks the prover questions about the computation performed by the prover
or the prover returns a certificate of correct computation (a proof) to the verifier which can
be locally checked. The former approach is an interactive approach to verifiable computation,
whereas the latter approach is non-interactive (only requires two moves). We work in the

1For very restricted classes of computations there are entirely practical solutions available.

WP: WP5 Deliverable: D5.8 Page: 6 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

predominant model which considers a single client and a single server. Works dealing with a
more complicated setting of multiple clients or servers are beyond the scope of this article.

Now, let us briefly informally discuss what we mean when we are talking about security, privacy,
and efficiency of verifiable computing solutions.

Security: Security basically means what an adversary is allowed to do in such a scheme and
will be formally defined in Section 2.1. Basically, we require that a malicious server (that
may have different capabilities) will not be able to convince a verifier of the correctness
of a computation although the result is not correct.

Privacy: Privacy comes in different flavours. Firstly, privacy can be related to the input of
the computation from a servers point of view (so called input privacy). It requires that
the server performing the computation does not learn the data on which the server is
computing. Such a feature is often desirable when dealing with sensitive data the server
should not see, e.g., medical data of a patient that should be analysed in the cloud, but not
disclosed to the cloud. Secondly, privacy can be related to the verifier (so called output
privacy). It requires that verifier checking the correctness of the computation does not
learn anything about the input to the computation. For an example think of a query to
a database that reveals the average income of all employees which should not leak the
individual incomes to the verifier.

Efficiency: Efficiency considers the work required by the verifier in comparison to locally
performing the computation. The efficiency is often considered in an amortized sense,
i.e., the verifier has some setup costs which are performed once and then by verifying
computations on different inputs the costs of this setup are amortized over time.

Another distinction is whether verification requires some secret information (private verifiabil-
ity) or can be performed by any party (public verifiability).

Besides the above measures, another important measure is the expressiveness of the computa-
tions that can be handled by some approach. While some approaches deal with function classes,
such as arithmetic circuits of fixed degree others can handle arbitrary arithmetic circuits or even
arbitrary C code.

In this work we do not consider approaches that require quite strong assumption (not in the
cryptographic sense). In particular, we do not consider approaches that rely on replication, i.e.,
to outsource the same computation to n independent servers and use majority voting on the
results to determine the correctness. Since this assumes uncorrelated failures, this assumptions
seems to strong. Also, we do not consider the use of trusted hardware at the server, remote
attestation or auditing. The former two approaches requires trusted hardware assumptions and
additionally trusted hardware is usually strongly limited in scalability. The latter uses a spot-
checking approach, but needs to assume that failures, if they occur, are very frequent, which
also seems to be a quite unreasonable assumption.

WP: WP5 Deliverable: D5.8 Page: 7 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

1.2 Organisation

We first give some general definitions in Section 2. Afterwards, in Section 3 we present the proof
and argument based systems that have been developed in the recent years and for which a variety
of tools are already available. Section 4 covers schemes based on fully homomorphic encryption
and in Section 5 we give an overview of schemes based on homomorphic authenticators (message
authentication codes and signatures). Section 6 covers solutions from functional cryptography,
while in Section 7 individual schemes that allow for the verification of specific computations are
presented. Finally, Section 8 provides a summary and comprehensive analysis of the different
types of verifiable computing schemes followed by a conclusion and planned future work in
Section 9.

WP: WP5 Deliverable: D5.8 Page: 8 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

2 Preliminaries

In this section we provide a formal definition of verifiable computing schemes and their rele-
vant properties. For the hardness assumptions underlying the individual constructions in the
subsequent sections we refer the reader to the original papers.

2.1 Verifiable Computation

In this work we will always consider the following scenario. A client C wants a server S to
evaluate a function f on some input x. Therefore C gives (encodings of) f and x to S. S will
do the computation and then return a result y to C. To prove the correctness of the result to
the client, i.e., to prove that y is indeed equal to f(x), a verifiable computing scheme can be
used. In the following we recall the definition of a non-interactive verifiable computing scheme
[GGP10].

Definition 2.1 (Verifiable Computing Scheme). A Verifiable Computing Scheme VC is a tuple
of the following probabilistic polynomial-time (PPT) algorithms:

KeyGen(1λ, f) : The probabilistic key generation algorithm takes a security parameter λ and the
description of a function f . It generates a secret key sk, a corresponding verification key
vk and a public evaluation key ek (that encodes the target function f) and returns all these
keys.

ProbGen(sk, x) : The problem generation algorithm takes a secret key sk and data x. It outputs
a decoding value ρx and a public value σx which encodes the data x.

Compute(ek, σx) : The computation algorithm takes the evaluation key ek and the encoded input
σx. It outputs an encoded version σy of the function’s output y = f(x).

Verify(vk, ρx, σy) The verification algorithm obtains a verification key vk and the decoding value
ρx. It converts the encoded output σy into the output of the function y. If y = f(x) holds,
it returns y or outputs ⊥ indicating that σy does not represent a valid output of f on x.

Definition 2.2 (Correctness). A verifiable computing scheme VC is correct if for any choice
of f and output (sk, vk, ek) ← KeyGen(1λ, f) of the key generation algorithm it holds that
∀ x ∈ Domain(f), if (σx, ρx) ← ProbGen(sk, x) and y ← Compute(ek, σx), then y = f(x) ←
Verify(vk, ρx, σy).

In the original work on non-interactive verifiable computing Gennaro et al. [GGP10] only con-
sidered privately verifiable computing schemes as defined below.

Definition 2.3 (Privately Verifiable Computing Scheme). If sk = vk and C needs to keep ρx
private, VC is called a privately verifiable computing scheme.

Clearly, such a scheme only allows C to run the verification algorithm. Later in [PRV12], Parno
et al. introduced the notion of publicly verifiable computing schemes.

WP: WP5 Deliverable: D5.8 Page: 9 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Definition 2.4 (Publicly Verifiable Computing Scheme). If sk 6= vk, VC is called a publicly
verifiable computing scheme.

It allows to hand out vk to third parties without revealing sk, therefore everyone with knowledge
of vk and ρx can verify the correctness of the server’s computation.

Intuitively the difference between the two notions is that in privately verifiable computing the
client keeps its verification key secret. It follows that only the client can verify the correctness
of a computation. Note that revealing the verification key to the server would allow it to break
the security, i.e. computing a wrong result leading to a correct verification proof.

In publicly verifiable computing, on the other hand, the verification key can be published since
knowledge of it does not help a malicious server to forge an incorrect result. This allows not
only the client but anyone to check the correctness of a performed computation.

2.2 Properties of Verifiable Computing Schemes

In this section a definition for security, privacy, and efficiency is given. We will mainly follow the
approach of Gennaro et al. [GGP10], who were the first to define verifiable computing schemes,
but also integrate some later proposals [BGV11a] to obtain stronger security definitions (i.e.,
adaptive security).

2.2.1 Security

Intuitively a verifiable computing scheme VC is secure, if a malicious server cannot persuade
the verification algorithm to output y∗ 6= f(x) except with negligible probability. Formally,
we define the following experiments. We distinguish between two types of adversaries, a weak
adversary and an adaptive adversary. The weak adversary [GGP10] can try only once to have
an incorrect result verified as correct (and is not allowed to call Verify in the privately verifiable

computing setting). An adaptive adversary [BGV11a] can run EXPVerify
A multiple times, by

calling EXPadaptVerifyA , and learn about the client’s acceptance bit.

Experiment EXPVerify
A [VC, f, λ] :

(sk, vk, ek)← KeyGen(f, 1λ)
for i = 1, . . . , ` = poly(λ) do
xi ← A(ek, x1, . . . xi−1, σ1, . . . , σi−1)
(σi, ρi)← ProbGen(sk, xi)

end for
(i, σ∗y)← A(ek, x1, . . . , x`, σ1, . . . , σ`)
y∗ ← Verify(vk, ρi, σ

∗
y)

if y∗ 6= ⊥ ∧ y∗ 6= f(x) then
return 1

else
return 0

end if

WP: WP5 Deliverable: D5.8 Page: 10 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Experiment EXPAdaptVerify
A [VC, f, λ]:

(sk, vk, ek)← KeyGen(f, 1λ)
for j = 1, . . . ,m = poly(λ) do

for i = 1, . . . , ` = poly(λ) do
xi ← A(ek, x1, . . . xi−1, σ1, . . . , σi−1, δ1, . . . , δj−1)
(σi, ρi)← ProbGen(sk, xi)

end for
(i, σ∗y)← A(ek, x1, . . . , x`, σ1, . . . , σ`, δ1, . . . , δj−1)
y∗ ← Verify(vk, ρi, σ

∗
y)

if y∗ 6= ⊥ ∧ y∗ 6= f(x) then
δj := 1

else
δj := 1

end if
end for
if ∃ j such that δj = 1 then

return 1
else

return 0
end if

In the non-adaptive case the adversaries A’s advantage is defined as

AdvVerifyA (VC, f, λ) = Pr
[
EXPVerify

A [VC, f, λ] = 1
]
.

So in practice this type of adversary is acceptable if a client aborts the protocol once it detects
an incorrect result.

An adaptive adversaries A’s advantage is defined as

AdvAdaptVerifyA (VC, f, λ) = Pr
[
EXPAdaptVerify

A [VC, f, λ] = 1
]
.

From this the security definition for verifiable computing schemes follows.

Definition 2.5 (Security). A verifiable computing scheme VC is (weakly) secure if

AdvVerifyA (VC, f, λ) ≤ negl(λ)

and adaptively secure if
AdvAdaptVerifyA (VC, f, λ) ≤ negl(λ).

2.2.2 Privacy

Verifiable computing can guarantee the integrity of a computation. Another desirable property
is to protect the secrecy of the client’s inputs. To formally define input privacy we define
the following experiment. We use the oracle OProbGen(sk,x) which calls ProbGen(sk, x) to obtain
(σx, ρx) and only returns the public part σx.

WP: WP5 Deliverable: D5.8 Page: 11 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Experiment EXPPrivacy
A [VC, f, λ]

(sk, vk, ek)← KeyGen(f, 1λ)

(x0, x1)← AOProbGen(sk,·)
(ek)

(σ0, ρ0)← ProbGen(sk, x0)
(σ1, ρ1)← ProbGen(sk, x1)

b
$← {0, 1}

b∗ ← AOProbGen(sk,·)
(ek, x0, x1, σb)

if b∗ = b then
return 1

else
return 0

end if

In this experiment, the adversary first receives the public evaluation key for the scheme. Then,
it selects two inputs x0, x1 and is given the encoding one of the two inputs chosen at random.
The adversary then must determine which input has been encoded. Note that during this
process the adversary is allowed to request the encoding of any input of its choice. We define
an adversaries A’s advantage as

AdvPrivacyA (VC, f, λ) =
∣∣∣Pr
[
EXPPrivacy

A [VC, f, λ] = 1
]
− 1/2

∣∣∣ .
Definition 2.6 (Input Privacy). A verifiable computing scheme VC provides input privacy if

AdvPrivacyA (VC, f, λ) ≤ negl(λ).

Besides input privacy a verifiable computing scheme can also provide privacy with respect to
the data output. This so called output privacy can be defined by an analogous experiment and
is omitted here.

2.2.3 Efficiency

Finally we are interested in using verifiable computing schemes by means of delegating com-
putations. For this we want the client’s work to be less than computing the function on its
own.

Definition 2.7 (Efficiency). A verifiable computing scheme provides efficiency if for any x and
any σy, the time required for KeyGen(1λ, f) plus the time required for ProbGen(sk, x) plus the
time required for Verify(vk, ρx, σy) is o(T), where T is the time required to compute f(x).

A slightly relaxed definition is the following.

Definition 2.8 (Amortized Efficiency). A verifiable computing scheme provides amortized ef-
ficiency if it permits efficient verification. This implies that for any x and any σy, the time
required for Verify(vk, ρx, σy) is o(T), where T is the time required to compute f(x).

WP: WP5 Deliverable: D5.8 Page: 12 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Note that in literature amortized efficiency has been defined ambiguously. We use here a broad
version that ensures that the minimal requirements for outsourceability are met.

Intuitively the difference between efficiency and amortized efficiency is the cost of the prepro-
cessing phase. Efficient verifiable computing schemes allow a client to verify the correctness of
a computation more efficiently than performing the computation by itself, including the prepro-
cessing phase. Some verifiable computing schemes have an expensive preprocessing phase, but
still provide an efficient verification phase. Since the preprocessing phase only has to be per-
formed once and might not be time critical in some applications, we classify them as verifiable
computing schemes providing amortized efficiency.

One aspect that also impacts the practicality of all verifiable computing schemes is the server’s
overhead to evaluate a computation using Compute versus natively executing it. Note that this
does not affect the computation complexity for the client and is therefore not considered in our
efficiency analysis.

WP: WP5 Deliverable: D5.8 Page: 13 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

3 Proof Based Verifiable Computing

In this section we discuss approaches to verifiable computation that rely on the concept of
(non-)interactive proof (IP) or argument systems and probabilistically checkable proofs (PCPs).
In this setting a (super-)polynomial-time prover wants to convince a polynomial-time verifier
of the truth of some NP statement, which in context of verifiable computing represents the
correctness of a given computation. While the use of the theoretical tools of IPs [GMR89] and
PCPs [BFLS91, AS98] as is, is highly unsuited for practical applications, in recent years this line
of work has been significantly improved by either theoretical improvements or the introduction
of clever tricks such as using suitable encodings or preprocessing. To verify the correctness of
an outsourced program or function by using proof (or argument) based systems, the program
or function has to be encoded. A suitable encoding is to write it as a circuit or to express it as a
set of arithmetic constraints, i.e., polynomials who simultaneously evaluate to 0 iff the circuit is
evaluated correctly. For the latter case, Genarro et al. [GGPR13] introduced two new notions,
one called quadratic span program (QSP) for boolean circuits and another one for arithmetic
circuits called quadratic arithmetic program (QAP). These constructions have been developed
specifically for the verifiable computing use case. The basic idea is to write a circuit as a set of
degree-2 constraints over some large finite field. As later shown in [BCI+13] the QAP approach
in [GGPR13] implicitly uses a PCP structure.

We refer the interested reader also to a recent article by Walfish and Blumberg [WB15] that
provides a good overview of proof based approaches to verifiable computations as well as the
available tools basing on different approaches and using different sophisticated tricks.

3.1 Interactive Proof Based Approaches

Subsequently, we consider interactive proof systems. Let us therefore define all required concepts
and let L ⊆ {0, 1}∗ be an NP-language.

Definition 3.1 (Interactive Proof System (IPS)). An interactive proof system for a language
L is an interactive protocol between an unrestricted prover P and a PPT verifier V such that
the following conditions hold:

Completeness. ∀x ∈ L : Pr[(P,V)(x) = 1] = 1,

Soundness. ∀x 6∈ L ∀P∗ : Pr[(P∗,V)(x) = 1] ≤ 1
2 .

where we use (P,V)(x) = 1 to denote that V accepts the interaction with P on common input x.

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial-time (witness) relation, i.e., a relation such that
membership of (x,w) in R can be decided in polynomial time in |x|. Subsequently, for an
NP-language L we may explicitly index it with its witness relation and write LR where LR =
{x | ∃w : (x,w) ∈ R}. Now, we can define the concept of proofs of knowledge which define IPs
with a stronger notion of soundness.

WP: WP5 Deliverable: D5.8 Page: 14 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

While the traditional definition of IPS does not put any restrictions on the prover P and
in particular allows P to run in super-polynomial time, this is clearly not meaningful for the
application to verifiable computation. In [GKR08] Goldwasser et al. present efficient interactive
proofs with polynomial provers for any function representable as a log-space uniform circuit that
has communication complexity being the depth of the circuit.

Several subsequent work build verifiable computing frameworks based on such IPS with poly-
nomial provers, which are more efficient than the ones discussed later in this section, but whose
expressibility in terms of functions is rather limited.

Verifiable Computation with Massively Parallel Interactive Proofs. In [TRMP12]
Thaler et al. proposed the first verifiable computing protocol with a reasonable server’s over-
head. The approach is to use parallel processing, i.e., running parts of the protocol in parallel
using a GPU, to speed up the evaluation process. Their protocol supports arithmetic circuits
of polylogarithmic depth. In [Tha13] the authors define the notion of regularity of a function.
This contains for instance to what extend output bits depend on input bits and therefore to
what extend the computation of the function can be parallelised. For circuits that are regular
in this sense the server’s overhead is just a factor of approximately 10. This construction does
not depend on any cryptographic assumptions.

Allspice: A Hybrid Architecture for Interactive Verifiable Computation. In [VSBW13]
Vu et al. generalized [TRMP12] to functions beyond arithmetic circuits. They build a system
called Allspice that also supports comparisons and inequality checks. This allows to verify
computations expressed as straight-line programs (i.e., programs that do neither branch nor
loop). Furthermore, their schemes improves with respect to the server’s overhead for non-
regular functions. On the other hand, they require a computationally more expensive setup
phase. Therefore, this scheme only achieves amortized efficiency.

Now, we define probabilistically checkable proofs (PCPs), which are proofs that can be verified
by a randomized algorithm using a bounded number of random coins and inspecting a bounded
number of bits in the proof.

Definition 3.2 (Probabilistically Checkable Proof (PCP)). A probabilistically checkable proof
(PCP) for a language L ∈ PCP(r(n), q(n)) is a string π such that there exists a PPT alorithm
V (the verifier) that, on input a ∈ {0, 1}n uses O(r(n)) random coins and inspects O(q(n))
locations in π, after which it outputs 1 (accept) or 0 (reject) such that:

Completeness. If a ∈ L, then there exists a π such that Pr[Vπ(a) = 1] = 1.

Soundness. If a /∈ L, then for all π∗ it holds that Pr
[
Vπ
∗
(a) = 1

]
< 1/2.

Here Vπ denotes that V has oracle access to the string π.

While asymptotically short PCPs [BGH+05, BGH+06] are interesting in theory, for their ap-
plication to verifiable computing the length of the PCP (needed to be retrieved by the verifier)
is still longer than the execution trace of any function. Thus, this does not yield solutions that
provide verification that is more efficient as the local evaluation of the function.

WP: WP5 Deliverable: D5.8 Page: 15 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

3.2 Interactive Argument Based Approaches

While in the IPS setting, the soundness guarantees are unconditional, i.e., hold with respect to
an all-powerful prover, one may reduce the soundness guarantees to computational soundness,
i.e., computationally bounded provers. The resulting systems are no longer denoted as proofs
but as arguments.

The idea of computationally sound proofs dates back to Kilian [Kil92], who proposed to com-
bine PCPs with linear commitments with local openings (such as those obtained from collision
resistant hash functions and generally known as Merkle Trees). The idea is to commit to a PCP
string π and the prover needs to send the commitment to π to the verifier. Then, the verifier can
ask the prover to open the commitment on various positions (determined by the random coins
of the PCP verifier). So, one obtains four-move argument systems. Later Micali in [Mic00] has
shown how this approach can be turned into a one-move scheme secure in the random oracle
model by applying the Fiat-Shamir heuristic [FS86]. The basic idea is simply to let the prover
compute the random coins (of the PCP verifier) by computing them from the output of a ran-
dom oracle on input the commitment to π. Although this is an interesting approach and yields
good asymptotic complexity when used with short PCPs, the constants within this approach
are intricate and seem to yield too large constants for any practical applications (although there
are no experimental results available).

Another direction within interactive arguments is the use of what is called linear PCPs [IKO07].
These PCPs are exponnentially long, but the prover does not need to write them down but the
PCP string is implicity represented as a linear function and the verifier uses additively homo-
morphic encryption to commit to a function of this form (cf. [IKO07, SMBW12]). However,
this comes at the cost of an expensive preprocessing stage which can be amortized over a batch
of verifications of the same function over different inputs.

Pepper: Making Argument Systems for Outsourced Computation Practical (Some-
times). In 2012 Setty et al. [SMBW12] presented an interactive argument system named
Pepper. Here functions are not represented as circuits but as arithmetic constraints. These are
algebraic equations that hold simultaneously iff the function f is evaluated correctly. Pepper
only supports a very limited class of functions and only achieves amortized efficiency, while
having a setup phase, whose computational cost is proportional to O(|f |).

Ginger: Taking Proof-Based Verified Computation a Few Steps Closer to Practi-
cality. Setty et. al. further improved on [SMBW12] in a system called Ginger [SVP+12] that
supports a larger class of computations such as inequality tests, floating point arithmetics, and
conditional branching.

Zataar: Resolving the Conflict Between Generality and Plausibility in Verified
Computation. Setty et al. [SBV+13] developed an improvement over Pepper and Ginger
called Zaatar. It uses a new PCP by using the algebraic representation of computations as
QAPs from [GGPR13] and removes the restrictions of the previous schemes yielding a richer
class of supported functions and it is also shown that Zaatar improves on the efficiency of Ginger.

WP: WP5 Deliverable: D5.8 Page: 16 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Pantry: Verifying Computations with State. Braun et al. introduced within their con-
struction Pantry [BFR+13b] an expansion of Zataar which allows verification of stateful com-
putations.

River: Verifiable Computation with Reduced Informational Costs and Computa-
tional Costs. In [XAG14] Xu et al. presented a QAP based verifiable computing system named
River. Compared to Zataar, River reduces the client’s computational costs while only marginally
increasing the server’s overhead. This scheme supports arithmetic circuits and achieves amor-
tized efficiency.

Buffet: Efficient RAM and control flow in verifiable outsourced computation. In
[WSR+15] Wahby et al. improve upon the functionality supported by Zataar and Pantry by
supporting programs with general loops.

3.3 Non-Interactive Argument Based Approaches

All proof based schemes presented so far are interactive protocols. In order to provide a non-
interactive solution, Gennaro et al. show in [GGPR13] how to construct succinct non-interactive
arguments of knowledge (SNARKs) using QSPs and QAPs. Like for all QAP based schemes
even though this primitive is secure against the adaptive adversary it has to be proven that
also the verifiable computing techniques using this primitive provide the same level of security.
Furthermore, all these schemes are only secure under an assumption that is non-falsifiable.

Definition 3.3 (Succinct Non-Interactive Argument (SNARG) [BCCT12]). A SNARG for the
relation R ⊂ RU is a triple of the following probabilistic, polynomial-time algorithms:

• GenV(1λ) → (vgrs, priv). Takes the security parameter λ as input and outputs a verifier-
generated reference string vgrs and corresponding private verification coins priv.

• P(y, w, vgrs)→ π. Takes a statement y = (M,x, t), a witness w, and the reference string
vgrs and outputs a proof π.

• V (priv, y, π) → {0, 1} verifies the validity of π for y using the private verification coins
priv and returns ‘1’ if the input is correct and ‘0’ otherwise.

These algorithms have to satisfy the following conditions.

Completeness. For any (y, w) ∈ R

Pr
[

V(priv, y, π) = 1
∣∣∣ (vgrs, priv)← GenV(1λ), π ← P(y, w, vgrs)

]
= 1

WP: WP5 Deliverable: D5.8 Page: 17 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Succinctness. The length of π that P(y, w, vgrs) outputs as well as the running time of V(priv, y, π)
is bounded by

p(λ+ |y|) = p(λ+ |M |+ |x|+ log(t))

where p is a universal polynomial that does not depend on R

Adaptive Soundness. For all poly-size prover P∗ and large enough λ ∈ N

Pr
[

V(priv, y, π) = 1
∣∣∣ (vgrs, priv)← GenV(1λ), (y, π)← P∗(vgrs), y /∈ LR

]
≤ negl(λ).

For our purpose we need an even stronger definition.

Definition 3.4 (SNARG of Knowledge (SNARK) [BCCT12]). A SNARK is a SNARG (GenV ,P,
V) where soundness is replaced by the following stronger condition.

Adaptive Proof of Knowledge. For any poly-size prover P∗ there exists a poly-size extractor
EP ∗ such that for all large enough λ ∈ N and all auxiliary inputs z ∈ {0, 1}poly(λ)

Pr

 (vgrs, priv)← GenV(1λ)
(y, π)← P∗(z, vgrs)

V(priv, y, π) = 1
∧ (y, w)← EP∗(z, vgrs)

w /∈ R(y)

 ≤ negl(λ).

Pinocchio: Nearly Practical Verifiable Computation. In [PHGR13] Parno et al. devel-
oped a system named Pinocchio that supports arithmetic circuits (that are turned into QAPs).
Pinocchio offers public verifiability, but no input-output privacy. Due to its preprocessing phase
that runs in time proportional to a one time execution of function f it only achieves amortized
efficiency.

Geppetto: Versatile Verifiable Computation. Costello et al. generalized the QAPs to
MultiQAPs and use them to build a verifiable computing system called Geppetto [CFH+15].
They show how to reduce the server’s overhead by decomposing circuits into a collection of
subcircuits. Geppetto offers public verifiability, but no input-output privacy. Due to its pre-
processing phase that runs in time proportional to a one time execution of function f it only
achieves amortized efficiency.

SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge.
In [BCG+13] Ben-Sasson et al. presented a system that can verify all operations in program-
ming language C albeit at an increased server’s overhead compared to [PHGR13]. It is also
based on QAPs. This system also offers public verifiability without input-output privacy and
achieves amortized efficiency.

Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture. In
[BCTV14] Ben-Sasson et al. presented a new QAP based SNARK for arithmetic circuits
that allows for more efficient verification and proof generation compared to [PHGR13] and
[BCG+13]. They also presented a universal circuit generator further broadening the class of
admitted programs. Furthermore, they show that their approach provides zero-knowledge, i.e.

WP: WP5 Deliverable: D5.8 Page: 18 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

if the statement is true, no cheating verifier learns anything other than this. Their construction
is publicly verifiable. However, they do not provide input-output privacy.

ADSNARK: Nearly Practical and Privacy-Preserving Proofs on Authenticated
Data. Backes et al. presented ADSNARK [BBFR15] a non-interactive proof system for
straight-line computations on authenticated data. Following the generic construction presented
in [CRR12] one obtains a verifiable computing system. ADSNARK includes both a publicly
verifiable and a more efficient privately verifiable proof. It achieves amortized efficiency and
input privacy.

Block Programs: Improving Efficiency of Verifiable Computation for Circuits with
Repeated Substructures. Xu et al. showed in [XAG15] a new and more efficient way to
handle loops in a program. This improvement can be used together with all other approaches
listed here that support loops.

WP: WP5 Deliverable: D5.8 Page: 19 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

4 Verifiable Computing from Fully Homomorphic Encryption

In this section we briefly discuss approaches to verifiable computing that use fully homomorphic
encryption (FHE) as a building block. All these schemes are privately verifiable and provide
input-output privacy, but due to the practical inefficiency of current FHE schemes, they do not
yield practical solutions. First, we define fully homomorphic encryption schemes and afterwards
describe the verifiable computing schemes using this primitive.

Definition 4.1 (Homomorphic Encryption (HE) Scheme [GGP10]). A homomorphic encryp-
tion scheme is a tuple of the following probabilistic, polynomial-time algorithms:

KeyGen(1λ) : This algorithm takes a security parameter λ as input and outputs a public key
pk and a secret key sk. The public key pk implicitly defines a message space M, and a
ciphertext space C.

Encrypt(pk,m) : The encryption algorithm takes a public key pk and message m ∈ M as input
and outputs a ciphertext c.

Decrypt(sk, c) : The decryption takes a secret key sk and a ciphertext c as input and outputs a
message m ∈M∪⊥.

Eval(pk, f,~ci) : The evaluation algorithm takes a public key pk, a description of a function f ,
and a vector of ciphertexts ~ci as input and outputs a new ciphertext c.

A homomorphic encryption scheme is homomorphic for a class F of functions, if

∀f ∈ F , {mi} ⊂ M
Pr[Decrypt(Eval(pk, f, {Encrypt(mi, pk)}), sk) = f(m1, . . . ,mn)] = 1.

Besides the above property of evaluating correctness (which may also allow a negligible evalu-
ation error), one requires the usual correctness property of an encryption scheme as well as at
least IND-CPA security.

Now, informally, a HE scheme is called fully homomorphic (is an FHE scheme) if the class
F of functions represents the class of all circuits. We stress that one requires an additional
compactness property, which basically means that the ciphertext output by the Eval algorithm
does only depend on the security parameter (and not on the function). This rules out trivial
constructions of FHE, e.g., ones where the Eval algorithm simply applies the identity function
(or does nothing) and the Decrypt evaluates the function on the decrypted ciphertext(s) and
then returns the result. We do not require a formal treatment of properties of FHE here and
refer the reader to [ABC+15] for an overview.

Non-Interactive Verifiable Computing: Outsourcing Computation to Untrusted
Workers. The verifiable computing scheme presented in [GGP10] by Gennaro et al. achieves
verifiability by combining Yao’s garbled circuits ([Yao82], [Yao86]) with FHE. This combina-
tion allows to reuse a garbled circuit multiple times while still preserving security. The idea is
that during the setup, the client once generates a garbled version of a circuit C representing a

WP: WP5 Deliverable: D5.8 Page: 20 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

function f and sets the public key to the garbled circuit and the secret key to the secret random
wire labels. If the clients wants to outsource a computation of f on some input x, its generates
a fresh key pair (sk, pk) of an FHE scheme, sets the public value σx to pk and ciphertexts to all
wire values of the binary expression of the input x and the decoding value ρx as sk. Then, the
server can use the homomorphic property of the FHE scheme to evaluate a garbled circuit and
sends the encrypted output wires back to the client. The client can then decrypt and map the
wires to the output y = f(x).

Besides providing privacy, for this construction the authors were the first to formally introduce
the notion of verifiable computation (see Section 2.1). This scheme is in the amortized model
and the server’s overhead depends on the efficiency of the underlying FHE scheme (making it
not practically efficient today). It only offers security against a weak adversary as no verification
queries are allowed.

Improved Delegation of Computation Using Fully Homomorphic Encryption. In
[CKV10] Chung et al. presented another way to verify the correctness of a result by using
FHE. The underlying idea is to evaluate f on some random point r in the preprocessing, store
yr = f(r) and then in the online phase ask Compute to return f evaluated on x and r in a
random order and check if yr equals what is returned for the computation corresponding to
r. If this result is correct, the server is assumed to behave honestly. However, with this naive
approach firstly the soundness error is too large, i.e., 1/2, and secondly the precomputed value yr
can only be used once. In order to overcome these issues, the client precomputes f(r1, . . . , rn)
for some random ri for large enough n (to make the soundness error small enough) and target
function f . In addition, it uses an FHE scheme to compute encryptions x̂i of the inputs xi and
the encryptions r̂i of the random values ri. The server will then be asked to homomorphically
evaluate both f(x̂1, . . . , x̂n) and f(r̂1, . . . , r̂n). The client can decrypt both results and accepts
the computation as correct if one of them matches his precomputed result.

This scheme achieves amortized efficiency while the server’s overhead depends on the underlying
FHE scheme. This scheme offers only weak security.

In [TC14] a similar scheme is presented, that reduces the preprocessing stage. It offers weak
security. However it should be noted that its security against an adaptive adversary has not
been analysed yet.

WP: WP5 Deliverable: D5.8 Page: 21 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

5 Homomorphic Authenticators

Homomorphic authenticators are cryptographic primitives that allow to evaluate a certain class
of functions on authenticated data, preserving the authenticity of any function of the class
applied to authenticated data. There exist constructions both in the secret key setting in the
form of homomorphic message authentication codes (MACs) and in the public key setting in the
form of homomorphic signatures. These solutions can be used to respectively construct privately
verifiable computing schemes and publicly verifiable computing schemes. We emphasize that
there are homomorphic MAC and signature schemes that are not known to allow verification
faster than computing the function, like for example [GW13] or [Fre12]. Such schemes are not
considered in this survey. For an overview of homomorphic signatures in general we refer to
Deliverable 4.4.

5.1 Message Authentication Codes

5.1.1 Definitions for Message Authentication Codes

First, we provide the definitions for homomorphic message authentication codes (MACs), their
correctness, and their security. To do so we will use multi-labels and multilabeled programs,
which we will briefly explain here.

A multi-label L = (∆, τ) consists of a data set identifier ∆ and an input identifier τ . Given some
function f : Mn →M that takes n inputs τ1, . . . τn label the different input columns while ∆
labels the set from which we take our data. This allows to both identify the dataset a server is
supposed to work on and restrict the server to this data. A labeled program P = (f, τ1, . . . , τn)
consists of a function f : Mn →M on n variables and each τi ∈ {0, 1}∗ is the label of the i-th
input to f . A multi-labeled program P∆ is a pair (P,∆) where P = (f, τ1, . . . , τn) is a labeled
program and ∆ ∈ {0, 1}∗ is the data set identifier.

Definition 5.1 (Homomorphic Message Authentication Code). A homomorphic MAC scheme
is a tuple of the following probabilistic, polynomial-time algorithms:

KeyGen(1λ,L) : The key generation algorithm takes as input a security parameter λ and the
description of the label space L, and outputs a secret key sk and a public evaluation key
ek (we omit to make the message space M explicit).

Auth(sk, L,m) : The tag computation algorithm takes a secret key sk, a multi-label L = (∆, τ),
and a message m as input, and outputs a tag σ.

Ver(sk,P∆,m, σ) : The verification algorithm takes as input a secret key sk, a message m, a
multi-labeled program P∆ = ((f, τ1, . . . , τn),∆) with f ∈ F , and a tag σ. It outputs ‘1’ if
σ is a valid tag for m under P∆ and ‘0’ otherwise.

Eval(ek,P∆, ~σ) : The evaluation algorithm takes as input an evaluation key ek, a multi-labeled
program P∆, and a vector of tags ~σ of length n (assuming f takes n inputs) and outputs
a new tag σ.

WP: WP5 Deliverable: D5.8 Page: 22 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Definition 5.2 (Authentication Correctness [BFR13a]). A homomorphic MAC satisfies au-
thentication correctness if for any message m ∈ M, all keys (sk, ek) ← KeyGen(1λ,L), any
multi-label (∆, τ) ∈ ({0, 1}∗)2, and any tag σ ← Auth(sk, L,m), we have that

Pr[Ver(sk, IdL,m, σ) = 1] = 1,

where IdL is the identity program with respect to L.

Definition 5.3 (Evaluation Correctness [BFR13a]). We fix a pair of keys (sk, ek)← KeyGen(1λ,
L), a function f :Mn →M, and any set of (message, program, tag) triples {(mi,P∆,i, σi)}ni=1

such that all multi-labeled programs P∆,i = (Pi,∆) share the same data set identifier ∆ and
Ver(sk, P∆,i,mi, σi) = 1. If m = f(m1, . . . ,mn),P = f(P1, . . . ,Pn), and σ = Eval(ek, f, (σ1, . . . ,
σn)), then

Pr[Ver(sk, P∆,m, σ) = 1] = 1.

To formally define security we look at the following security experiment (due to [BFR13a]).

Setup. The challenger generates (sk, ek)← KeyGen(1λ,L) and gives ek to the adversary A.

Authentication Queries. The adversary can adaptively ask for tags on multi-labels and
messages of its choice. Given a query (L,m) where L = (∆, τ), the challenger proceeds as
follows: If (L,m) is the first query with data set identifier ∆, then the challenger initializes an
empty list T∆ = ∅ for the data set identifier ∆. If T∆ does not contain a tuple (τ, ·) (i.e. the
multi-label (∆, τ) was never queried), the challenger computes σ ← Auth(sk, L,m), returns σ to
A and updates the list T∆ ← T∆ ∪ (τ,m). If (τ,m) ∈ T∆ (i.e. the query was previously made),
then the challenger replies with the same tag generated before. If T∆ already contains a tuple
for label τ , i.e. (τ,m′), for some m 6= m′ then the challenger ignores the query.

Verification Queries. The adversary has access to a verification oracle as follows: Given
a query (P∆,m, σ) from A, the challenger replies with the output of Ver(sk,P∆,m, σ).

Forgery. The adversary terminates the experiment by sending (P∗∆∗ ,m∗, σ∗) for some P∗∆∗ =
(P∗,∆∗) and P∗ = (f∗, τ∗1 , . . . , τ

∗
n) to the challenger. Notice that also during the verification

query A sends such tuples to the challenger and asks for verification. Thus, if this query is
accepted this allows it to terminates the experiment successfully.

We say a labeled program P∗ = (f∗, τ∗1 , . . . , τ
∗
n) is well-defined with regards to T∆ if one of

the following conditions hold.

• There exist messages m1, . . . ,mn such that T∆∗ contains all tuples (τ∗1 ,m1), . . . , (τ∗n,mn).
Intuitively, this means that the entire input space of f for the data set ∆∗ has been
authenticated.

• There exist indices i ∈ {1, . . . , n} such that (τ∗i , ·) /∈ T∆∗ . This happens when A never
asks authentication queries with multi-label (∆∗, τ∗i) and the function f(·) outputs the
same value for all possible unauthenticated inputs.

WP: WP5 Deliverable: D5.8 Page: 23 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

The experiment outputs ‘1’ if and only if Ver(sk,P∗∆∗ ,m∗, σ∗) = 1 and one of the following
conditions holds:

• Type 1 Forgery: no list T∆∗ was created during the game, i.e., no message m has been
authenticated with respect to data set identifier ∆∗ during the experiment.

• Type 2 Forgery: P∗ is well-defined with regards to T∆∗ and m∗ 6= f∗({mj}(τj ,mj)∈T∆∗),
i.e. m∗ is not the correct output of the labeled program P∗ when executed on previously
authenticated messages (m1, . . . ,mn).

• Type 3 Forgery: P∗ is not well-defined with regards to T∆∗.

Definition 5.4 (Security). A homomorphic MAC scheme is adaptively secure if A wins the
experiment above with probability negl(λ). A homomorphic MAC scheme is (weakly) secure if
A wins with probability negl(λ) the above experiment without asking verification queries.

5.1.2 Verifiable Computing Schemes Based on MACs

Based on these homomorphic MACs several verifiable computing schemes have been proposed.
All of them are based on bilinear or multilinear maps and for a definition of the respective
assumptions, we refer to the original papers.

The schemes described below are all privately verifiable and only the work in [FGP14] addresses
privacy.

Verifiable Delegation of Computation on Outsourced Data. In [BFR13a] Backes et
al. construct a homomorphic MAC for arithmetic circuits f of degree 2. It is based on bilinear
maps (pairings) and pseudo-random functions with so called closed-form efficiency. After a
preprocessing stage of complexity O(|f |) the client can verify the correctness in constant time.
This paper presents a generic way to turn homomorphic MACS with efficient verification into
verifiable computing schemes and thus achieves amortized efficiency. Furthermore, it is secure
against adaptive adversaries.

Generalized Homomorphic MACs with Efficient Verification. In [ZS14] Zhang and
Safavi-Naini generalized the verifiable computing scheme presented in [BFR13a]. Using `-linear
maps, their homomorphic MAC supports arithmetic circuits of depth `. Using the generic trans-
formation of [BFR13a], one can thus obtain a verifiable computing scheme for depth ` circuits.
It also achieves amortized efficiency, while offering security against adaptive adversaries.

Efficiently Verifiable Computation on Encrypted Data. In [FGP14] Fiore et al. show
how to combine the homomorphic MACs of [BFR13a] with a FHE scheme to construct a verifi-
able computing scheme for multivariate polynomials of degree 2 that offers input privacy. They
furthermore improve on the efficiency by using a homomorphic hash function. Likewise this
scheme achieves amortized efficiency and remains secure against adaptive adversaries.

WP: WP5 Deliverable: D5.8 Page: 24 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

5.2 Homomorphic Signatures

5.2.1 Definitions for Homomorphic Signatures

In this section we provide the definitions for homomorphic signatures, their correctness, and
their security.

Definition 5.5. A homomorphic signature scheme is a tuple of the following probabilistic,
polynomial-time algorithms:

KeyGen(1λ,L) : The algorithm takes a security parameter λ and the description of the label
space L as input and outputs a public key vk and a secret key sk. The public key vk
implicitly defines a message space M and a set F of admissible functions.

Sign(sk, L,m) : The signing algorithm takes a secret key sk, a multi-label L = (∆, τ), and a
message m ∈M as input and outputs a signature σ.

Ver(vk,P∆,m, σ) : The verification takes a public key vk, a message m ∈ M, a multi-labeled
program P∆ = ((f, τ1, . . . , τn),∆) with f ∈ F , and a signature σ as input. It outputs ‘1’
if σ is a valid signature for m under P∆ and outputs ‘0’ otherwise.

Eval(vk,P∆,
−→σ) : The evaluation algorithm takes a public key vk, a program P∆ = ((f, τ1, . . . ,

τn),∆), and a vector of signatures ~σ of length n (assuming f takes n inputs). It outputs
a new signature σ.

As in case of homomorphic MACs, the labels are used to tag the respective dataset.

Definition 5.6 (Authentication Correctness). A homomorphic signature scheme satisfies au-
thentication correctness if for any message m ∈ M, all keys (sk, vk) ← KeyGen(1λ,L), any
multi-label L = (∆, τ) ∈ ({0, 1}∗)2, and any signature σ ← Sign(sk, L,m), it holds that

Pr[Ver(vk, IdL,m, σ) = 1] = 1,

where IdL is the identity program with respect to L.

Definition 5.7 (Evaluation Correctness). We fix a pair of keys (sk, vk) ← KeyGen(1λ,L), a
function f :Mn →M, and any set of message/program/signature triples {mi,P∆,i, σi}ni=1 such
that all programs P∆,i = (Pi,∆) share the same data set identifier ∆ and Ver(vk,P∆,i,mi, σi) =
1. If m = f(m1, . . . ,mn),P = f(P1, . . . ,Pn), and σ = Eval(vk, f, (σ1, . . . , σn)), then

Pr[Ver(vk,P∆,m, σ) = 1] = 1.

The formal definition of unforgeability can be given analogously to Definition 5.4. The only
difference is that in the experiment the verification algorithm Ver takes public key vk instead
of private key sk as input.

WP: WP5 Deliverable: D5.8 Page: 25 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

5.2.2 Signature Based Verifiable Computing on Linear Functions

For certain classes of functions, it is possible to straightforwardly build a verifiable computing
scheme from homomorphic signatures. For linear functions

f : FkN → Fn

v1, . . . vN 7→
N∑
i=1

civi

linearly homomorphic signatures have been proposed, originally in the context of network coding
(see [BFKW09]). Below we sketch a verifiable computing protocol between a client C and a
server S. Note that without combining this with a suitable homomorphic encryption scheme to
encrypt the input data, this construction does not provide input-output privacy.

Setup: C generates the keys (sk, vk) ← KeyGen(1λ) for a linearly homomorphic signature
scheme.

Data Outsourcing: To outsource vectors v1, . . . , vN , C first signs wi = (ei, vi)
T , where ei is

the i-th canonical basis vector of Fk with regards to some label τ , i.e. σi ← Sign(sk, wi, τ) for
i = 1, . . . , N and sends all (wi, σi) to S.

Delegation: C sends f = (c1, . . . , cN) to S.

Computation: S computes y =
∑N

i=1 ciwi and σ ← Eval(f, τ, v1, . . . , vN , σ1, . . . , σN) and sends
(y, σ) to C.

Verification: C checks, whether σ is a valid signature for y and whether the result is of the
form y = (c1, . . . cN , ỹ)T . If both is true it accepts ỹ as the result.

In 2015 Catalano et al. [CFN15] presented the first construction that is signature based and
allows to verify faster than computing target function f . This solution is based on bilinear maps
and uses asymmetric programmable hash functions (see the paper for a formal definition). These
signatures are also secure against adaptive adversaries. It should be noted that the preprocessing
stage in this paper is divided into the two algorithms KeyGen and EffVerPrep. This however is
still only dependent on f and therefore fits our criteria of amortized efficiency.

5.2.3 Signature Based Verifiable Computing for Polynomial Functions

A broader class of admissible functions are multivariate polynomials of fixed degree. The fol-
lowing works provide signature schemes for polynomial functions. Furthermore, they sketch
how these schemes can be used to support verifiable computing. Note that these schemes do
not address input-output privacy.

Homomorphic Signatures with Efficient Verification for Polynomial Functions. Cata-
lano et al. constructed homomorphic signatures in [CFW14] based on multilinear maps. Their

WP: WP5 Deliverable: D5.8 Page: 26 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

signatures support arithmetic circuits of fixed depth. By using the techniques of [BFR13a],
one is able to realize a verifiable computing scheme secure against adaptive adversaries that is
efficient in an amortized sense.

Algebraic (Trapdoor) One-Way Functions and their Applications. Catalano et al.
showed in [CFGV13] how to use OWFs to outsource (multivariate) polynomial evaluations
of fixed degree. In particular they construct a OWF based on the RSA assumption and use
this to build a verifiable computing scheme. It is the first one that achieves public verifiability
without bilinear maps. The scheme is efficient in an amortized sense and offers adaptive security.

5.3 Signature Based Verifiable Computing Using Homomorphic Encryption

Verifiable computing schemes based on homomorphic signatures or homomorphic MACs do
not provide data confidentiality. Therefore, Lai et al. showed in [LDPW14] how to generi-
cally construct a verifiable homomorphic encryption (VHE) scheme which allows for verifiable
computation on outsourced encrypted data.

The constructed VHE combines a homomorphic encryption (HE) scheme, as defined in Sec-
tion 4, and a so called homomorphic encrypted authenticator (HEA). The latter is basically a
homomorphic signature scheme, as defined in Section 5.2.1, providing semantic security.

To formally define semantic security we look at the following security experiment between a
challenger and an adversary A (due to [LDPW14]).

Setup. The challenger runs (vk, sk) ← KeyGen(1λ,L) and gives vk to A and initializes a
list T∆ = ∅.

Authentication Queries. A can adaptively ask the challenger for authenticators of its
choice. Given a query (L,m) by A, where L = (∆, τ), the challenger proceeds as follows:
If (L,m) ∈ T∆, the challenger computes σ ← Sign(sk, L,m). If T∆ does not contain a tuple
(L,m) (i.e., the multi-label (∆, τ) was never queried), the challenger chooses a fresh multi-label
L = (∆, τ) ∈ ({0, 1}∗)2, computes σ ← Sign(sk, L,m), returns σ to A and updates the list
T∆ ← T∆ ∪ (L,m).

Challenge. The adversary submits a multi-label L = (∆, τ) ∈ ({0, 1}∗)2 and two messages
m0,m1 ∈ M. The challenger selects a random bit β ∈ {0, 1}, computes σ∗ ← Sign(sk, L,mβ),
and sends σ∗ to the adversary.

Guess. The adversary A outputs its guess β∗ ∈ {0, 1} for β and wins the game if β = β∗.

The advantage of the adversary in this game is defined as |Pr[β = β∗]− 1
2 | where the probability

is taken over the random bits used by the challenger and the adversary.

Definition 5.8 (Homomorphic Encrypted Authenticator (HEA)). A HEA is a signature scheme
as defined in Section 5.2.1 that is semantically secure, i.e. where all probabilistic polynomial

WP: WP5 Deliverable: D5.8 Page: 27 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

time adversaries have at most a negligible advantage in the security game described above.

Definition 5.9 (Verifiable Homomorphic Encryption (VHE)). Let HE = (HE.KeyGen,HE.En-
crypt,HE.Decrypt,HE.Eval) be a homomorphic encryption scheme and let HEA = (HEA.KeyGen,
HEA.Sign,HEA.Ver,HEA.Eval) be a HEA. Then, a VHE scheme is a tuple of the following PPT
algorithms:

KeyGen(1λ,L) : The algorithm takes a security parameter λ and the description of the label space
L as input and outputs a public key pk = (pkHE, pkHEA) and a secret key sk = (skHE, skHEA),
where (pkHE, skHE) ← HE.KeyGen(1λ) and (pkHEA, skHEA) ← HEA.KeyGen(1λ,L). The
public key pk implicitly defines a message space M and a set F of admissible functions.

EncSign(skHEA, pkHE, L,m) : This algorithm takes a secret key skHEA, a public key pkHE, a multi-
label L = (∆, τ), and a message m ∈ M as input. It runs cHE ← HE.Encrypt(pkHE,m)
and cHEA ← HEA.Sign(skHEA, L,m) and returns c = (cHE, cHEA).

VerDec(skHE, pkHEA,P∆,m, c) : This algorithm takes a secret key skHE, a public key pkHEA, a
message m ∈ M, a multi-labeled program P∆ = ((f, τ1, . . . , τn),∆) with f ∈ F , and a
ciphertext c as input. If HEA.Ver(pkHEA,P∆, cHEA) = 1 it runs m← HE.Decrypt(skHE, cHE)
and outputs m. It outputs ‘0’ otherwise.

Eval(pk,P∆,
−→c) : This algorithm takes a public key pk, a multi-labeled program P∆ = ((f, τ1, . . . ,

τn),∆) with f ∈ F , and a vector of ciphertexts vecc of length n (assuming f takes n
inputs). It runs cHE ← HE.Eval(pkHE, f,

−→c) and cHEA ← HEA.Eval(pkHEA,P∆,~c) and
outputs the new ciphertext c = (cHE, cHEA).

The authors used in their work standard homomorphic signature schemes to build the homomor-
phic encrypted authenticator. This instantiation has the shortcoming that it does not provide
an efficient verification process. However, the construction indicates that a verifiable computing
scheme that provides not only privacy, but also amortized efficiency can be built, e.g., using
the signature scheme proposed by Catalano et al. [CMP14]. Another important requirement
for a successful instantiation, which has not been explicitly mentioned by the authors, is that
the homomorphic encryption scheme and the homomorphic encrypted authenticator must be
homomorphic over the same message space M. Thus, it should be analysed for which pairs of
encryption and signature schemes this is provided.

WP: WP5 Deliverable: D5.8 Page: 28 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

6 Verifiable Computing Frameworks From Functional Encryp-
tion and Functional Signatures

In addition to proof based verifiable computing schemes and constructions that rely on homo-
morphic encryption or homomorphic authenticators, verifiable computing schemes can also be
constructed using functional encryption or functional signatures.

6.1 Verifiable Computation from Functional Encryption

There are basically two approaches that use functional encryption (FE) to build a verifiable
computing scheme. One uses (key-policy) attribute-based encryption (ABE), a specific instan-
tiation of functional encryption, and the other one is constructed from FE schemes. Key-policy
ABE (KP-ABE) [SW05, GPSW06] is a rather recent public key encryption paradigm, where a
public key is associated to a universe of attributes A and secret keys are associated to Boolean
functions f . A holder of a secret key corresponding to f can only decrypt a message encrypted
with respect to a subset A′ of the attributes iff f(A′) = 1. FE [BSW11] is a very generic
definition of various types of public key encryption concepts, such as IBE, ABE and many
other classes. Basically, in such schemes secret keys are associated to a function f and given
a ciphertext of a message m under the corresponding public key, the holder of a secret key
corresponding to f will only learn f(m) during decryption, instead of learning the full plaintext
m. Assuming that the plaintext space has an additional structure and in particular plaintexts
are pairs of some (public) index and message space, then one can define FE on predicates over
the index space and the key space. In doing so, one obtains KP-ABE as a so called predicate
encryption (PE) scheme with a public index.

Verifiable Computation from Attribute Based Encryption. In [PRV12] Parno et al.
showed how to build a publicly verifiable computation scheme from any key-policy ABE scheme
for function family F (that is closed under complement). Their construction verifies the correct
output of a function f : {0, 1}n → {0, 1} that can be computed by a polynomial sized boolean
formula. They use the fact that a message encrypted under an attribute x can only be decrypted
if f(x) = 1 holds. One can extend this to functions f with outputs of arbitrary bitlength by de-
composing f into boolean subfunctions f1, . . . , fn. The client’s computation is independent of f .
This approach does not provide input-output privacy and the security has not been analysed yet.

Delegatable Homomorphic Encryption with Applications to Secure Outsourcing
of Computation. Barbosa and Farshim showed in [BF12] how to create a verifiable comput-
ing scheme from a FE scheme, a FHE scheme, and a special type of MACs denoted as MACs
with chameleon keys. For the relevant definitions and properties of their construction we refer
to the original paper. By combining these primitives, this scheme achieves amortized efficiency,
while offering public verifiability, and security against adaptive adversaries. It should however
be noted that one of the necessary building blocks for this construction, a so called predicate
encryption (PE) scheme for general predicates, does not exist to the authors knowledge. Today
we have functional encryption for any circuit (see, e.g., [GGH+13]). We, however, note that

WP: WP5 Deliverable: D5.8 Page: 29 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

no efficient instantiations are known. Furthermore, they assume that the auxiliary informa-
tion is transferred not only authentically but also confidentially from the client to the verifier.
Their proposed scheme can however handle functions of arity one that can be expressed as k
CNF/DNF (conjunctive/disjunctive normal forms) formulas for fixed k. Note that for k ≥ 3
constructing such formulas is NP hard (see [Coo71]).

6.2 Verifiable Computation from Functional Signatures

In [BGI14] Boyle et al. introduced the concept of functional signature (FS) schemes. In such a
scheme, in addition to a master signing key msk, which allows to compute signatures on arbitrary
messages, there are secondary signing keys skf , which are parametrized by a particular function
f . Such a key skf restricts the signing capabilities to messages in the range of f , i.e., given any
m the key skf only allows to produce signatures for f(m). Before discussing the application of
FS to verifiable computing, we briefly introduce the concept of FS.

Definition 6.1 (Functional Signature (FS) Scheme [BGI14]). A functional signature (FS)
scheme for a message space M and function family F = {f : Df → M} consists of the
following polynomial time algorithms:

Setup(1λ) The setup algorithm takes as input the security parameter λ and outputs the master
signing key msk and master verification key mvk.

KeyGen(msk, f) : The key generation algorithm takes as input the master signing key msk and
a function f ∈ F (represented as a circuit) and outputs a signing key skf for f .

Sign(skf , f,m) : The signing algorithm takes as input the signing key skf , a function f ∈ F and
a message m ∈ Df and outputs f(m) and a signature σ for f(m).

Verify(mvk,m, σ) : The verification algorithm takes as input a master verification key mvk, a
message m and a signature σ and outputs 1 if the signature is valid or 0 otherwise.

An FS scheme needs to provide the usual correctness property as well as unforgeability. Un-
forgeability is defined with respect to adaptively chosen signing keys for functions and adaptive
signature queries and requires that under such queries it is infeasible to produce a valid sig-
nature for a message that is outside the range of the queried functions and is not the image
of any function and message queried to the signing oracle (cf. [BGI14] for formal definitions).
Additionally FS schemes may provide the properties of function privacy and succinctness. Infor-
mally, the former means that the distributions of signatures on a message generated via different
signing keys are computationally indistinguishable and the latter means that the signature size
is independent of the size of the message m as well as the size of the description of the function
f .

In [BGI14] the authors propose three generic constructions. The first is a naive construc-
tion and just requires an adaptively secure (EUF-CMA secure) signature scheme. However, it
does neither achieve function privacy nor succintness. The second construction uses the first

WP: WP5 Deliverable: D5.8 Page: 30 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

one, but additionally requires a zero-knowledge succinct non-interactive argument of knowl-
edge (SNARK) system in order to achieve function privacy and succinctness. Finally, the third
construction drops the succinctness requirement but still preserves function privacy. This is
achieved using a non-interactive zero-knowledge arguments of knowledge (NIZKAoK) system
instead of SNARKs. Unfortunately, neither of these three construction can be considered prac-
tically efficient.

We now sketch the application of FS to verifiable computing, where we align our description
with the general definition of a verifiable computing scheme (cf. Definition 2.1). Therefore, let
(FS.Setup,FS.KeyGen,FS.Sign,FS.Verify) be a secure, i.e., correct and unforgeable, FS scheme.

KeyGen(1λ, f) : Based on security parameter λ, run (msk,mvk)← FS.Setup(1λ). Set the evalu-
tation key ek := skf ′ with skf ′ ← FS.KeyGen(msk, f ′) where f ′(x) := f(x)||x. It sets the
verification key vk := mvk and sk := ⊥ and returns (sk, vk, ek).

ProbGen(sk, x) : The problem generation algorithm does not need to do any preprocessing. It
sets σx := x and ρx := x. The value σx is given to the server S to compute with it while
the decoding value ρx is kept by the client C (but could be made public).

Compute(ek, σx) : Using the evaluation key ek := sk′f and the (encoded) input σx := x, S
computes and returns an encoded version σy := (y, σ) with (·, σ) ← FS.Sign(skf ′ , f

′, x)
and with y := f(x).

Verify(vk, ρx, σy) : Using the verification key vk := mvk, the decoding value ρx := x and the
encoded result σy := (y, σ) the verification algorithm computes b← FS.Verify(mvk, y||x, σ)
and if b = 1 it outputs y and ⊥ otherwise.

The correctness of this construction follows from the correctness of the FS scheme. Moreover,
it is obvious that the so obtain verifiable computing scheme is a publicly verifiable computing
scheme according to Definition 2.4.

The above construction provides security in the non-adaptive model (weakly secure) (cf. Defini-
ton 2.5 and Theorem 4.4 in [BGI14]). Moreover, it is clear that the so obtained scheme does
trivially not provide input privacy (cf. Defintion 2.6). The efficiency of the above construction
is directly related to the underlying FS scheme. In particular, the runtime of the verification is
that of FS.Verify and the proof size is equal to the size of the signature of the FS scheme. As
the definition of FS does not put any restriction on the time it requires to verify a signature
(apart from being polynomial in the security parameter) it depends on the concrete FS scheme
used in the construction if the efficiency definitions for verifiable computing are satisfied (cf.
Definition 2.7 and 2.8).

WP: WP5 Deliverable: D5.8 Page: 31 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

7 Verifiable Computing for Specific Applications

Beyond the families of schemes we have seen so far, there exist verifiable computing schemes
for specific functions, which we present here. Works like [CRR12], [ZSL14], or [CSL+15] which
consider multiple clients or servers are beyond the scope of this work.

Signatures of Correct Computation. Papamanthou et al. presented in [PST13] the first,
and to our knowledge only, framework for signatures of correct computation (SCC), which
implies publicly verifiable computing. In particular they construct two SCC schemes, one for
multivariate polynomials of fixed degree d and one for computing the derivations of multivariate
polynomials. For multivariate polynomials f they use the fact that one can always write

f(x1, . . . , xn)− f(a1, . . . , an) =

n∑
i=1

(xi − ai)qi(x1, . . . , xn),

where f, qi ∈ F[x1, . . . , xn] and the ai are fixed inputs. Working over a symmetric bilinear
group generated by g with bilinear map (or pairing) e one can compute FK(f) = gf(t1,...,tn)

for some random ti. The server evaluates the function for the given input a1, . . . , an and writes
f(x1, . . . , xn) − f(a1, . . . , an) like above. It computes wi = gqi(t1,...,tn) and gives the wi as well
as the claimed result v to the client. The client can then check, whether

e(FK(f) · g−v, g) =
n∏
i=1

e(gti−ai , wi)

holds. If it does, it accepts the result.

Using similar techniques they also construct a scheme to verify the computation of derivations.
Both schemes are set in the standard model, offer adaptive security, but do not address input-
output privacy.

Efficient Computation Outsourcing for Inverting a Class of Homomorphic Func-
tions. In [ZML14] Zhang et al. present a scheme for verifying the inversion of a class of
functions, namely group homomorphisms φ where computing a preimage under φ is computa-
tionally much more expensive than evaluating φ. In this case the server’s evaluation of φ−1 can
efficiently be verified by computing φ. This scheme offers only private verifiability, but is secure
against an adaptive adversary. It also does not depend on any computational assumption and
thus provides security in an information-theoretic sense. However, it does not provide input-
output privacy.

Secure Delegation of Elliptic-Curve Pairing. A further scheme for outsourcing a concrete
function, in this case a cryptographic bilinear map e, was introduced by Chevallier-Mames et
al. in [CCM+10]. To compute e(A,B) the client asks the server to compute

a1 = e(A+ g1G1, G2)

a2 = e(G1, B + g2G2)

a3 = e(A+ g1G1, B + g2G2)

a4 = e(s1A+ r1G1, s2B + r2G2)

WP: WP5 Deliverable: D5.8 Page: 32 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

with random points G1, G2 and random integers g1, g2, r1, r2, s1, s2. The client computes

eAB = a−g2
1 · a−g1

2 · a3 · e(G1, G2)g1g2

and accepts the result as correct if

a4 = (eAB)s1s2 · ar2s11 · ar1s22 · e(G1, G2)r1r2−g1r2s1−g2r1s2

holds. This scheme provides private verifiability, is efficient, and offers input and output privacy.
In addition, it is unconditionally secure, so in particular secure against an adaptive adversary.

Efficiently Verifiable Computation on Encrypted Data. In [FGP14] Fiore et al. pre-
sented a way to verify univariate polynomial evaluations over encrypted data. The resulting
scheme offers private verifiability, input privacy, and adaptive security while providing amor-
tized efficiency.

TrueSet: Nearly Practical Verifiable Set Computations. In [KPP+14] Kosba et al.
presented a system named TrueSet that allows to verify set operations. This scheme supports
set circuits built on union, intersection, and set difference gates. They presented a variant of
[GGPR13]’s QAPs called quadratic polynomial programs (QPP). It achieves amortized efficiency
and decreases the server’s overhead by a factor of more than 150 compared to [GGPR13]. This
scheme does not provide input-output privacy and security against adaptive adversaries is not
mentioned.

Verifiable Delegation of Computation over Large Datasets. In [BGV11b] Benabbas
et al. presented a verifiable computing scheme for multivariate polynomials of fixed degree d.
Their scheme allows amortized verification while offering security against adaptive adversaries.
It does not consider input-output privacy.

WP: WP5 Deliverable: D5.8 Page: 33 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

8 Analysis of the State of the Art

In this section, all verifiable computing schemes discussed in this survey are summarized and
their properties are highlighted. The first property examined is which function class the scheme
supports. Some support (subsets of) arithmetic circuits, while others can also deal with stateful
operations or general loops, i.e., without needing to know the length of the loop during the
preprocessing stage. Furthermore, we specify which type of adversary the solution can cope
with. Some schemes are secure against a strong adversary (S), some are only secure against a
weak adversary (W), and for some approaches the security level has not been analysed yet (∅).
In addition, we show which primitives the construction rely on, since most of them come with
further assumptions regarding security. Furthermore, in some scenarios it might be preferable
that the scheme provides a certain level of privacy. Depending on the type of data, a scheme
may either ensure input privacy (I), output privacy (O), input-output privacy (I/O), or no pri-
vacy at all (×). To be usable in practice, a scheme also needs to provide efficiency as described
in Section 2.7. We define a verifiable computing scheme as efficient (E), if the time required for
preprocessing and verification is o(T), where T is the time required to compute the function.
If only the verification can be performed in o(T), then the computing scheme only provides
amortized efficiency (A). Note that verifiable computing schemes that do not provide any of
these two types of efficiency have not been discussed in this work. Finally, most solutions are
tailored to private verification, i.e., where the verification can only be performed by the data
owner. However, in some scenarios the verification must be performed by a party different to
the owner, requiring the scheme to be publicly verifiable. Sometimes it is not possible to make
a general statement about a scheme’s attributes as they are dependent on choices of primitives
(D). These abbreviations are summarized in table 1.

Category Abbreviation Explanation

Adversary S Strong adversary
W Weak adversary

Privacy I Input privacy
O Output Privacy

I/O Input-output privacy
× no privacy

Efficiency E Efficient
A Amortized efficient

General D Dependent on primitives

Table 1: Used abbreviations

As shown by Table 2 the only proof based approach that provides an efficient generation and
verification process is the one proposed in [TRMP12]. This scheme, however, only supports a
very restricted class of circuits. The other PCP or linear PCP based constructions support larger
classes of programs, but only achieve amortized efficiency. In addition, all these approaches are
interactive, i.e., require multi round interaction between the server and the client. To reduce
the server’s overhead later solutions are non-interactive. The latest proposal [BBFR15] even

WP: WP5 Deliverable: D5.8 Page: 34 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Scheme Function Class P E PV

[TRMP12]/[Tha13] Circuits of polylog. depth × E X
[VSBW13] Arithm. Circuits × A X
[SMBW12] Arithm. Circuits × A ×
[SVP+12] Arithm Circuits + more × A ×
[BFR+13b] Stateful × A ×
[SBV+13] Arithm. Circuits + more × A ×
[XAG14] Arithm. Circuits × A X
[PHGR13] Arithm. Circuits + more × A X
[CFH+15] Arithm. Circuits + more × A X
[BCG+13] General Loops × A X
[BCTV14] General Loops × A X
[BBFR15] Arithm. Circuits I A X

Table 2: Proof Based Verifiable Computation Schemes. Legend: P. . . privacy, E. . . efficiency,
PV. . . public verifiability

achieves input privacy and provides public verifiability. However, all non-interactive proof
based schemes use QAPs and are therefore based on non-falsifiable assumptions of knowledge.
As shown in [GW11] it is actually impossible to build a SNARG (e.g., using QAPs) that is based
solely on falsifiable assumptions. This raises some questions on the security of these schemes. In
fact, although it has been shown that PCPs and QAPs are secure against an adaptive adversary,
it has not been proven that the same holds true for the verifiable computing scheme using this
primitive.

Scheme Function Class A P E PV

[GGP10] Arithm. Circuits W I/O A ×
[CKV10] Arithm. Circuits W I/O A ×
[TC14] Arithm. Circuits W I/O A ×

Table 3: FHE Based Verifiable Computation Schemes. Legend: A . . . adversary, P. . . privacy,
E. . . efficiency, PV. . . public verifiability

Constructions based on fully homomorphic encryption naturally offer input-output privacy,
because the inputs and correspondingly the outputs are encrypted. However, they do not
provide public verifiability. Furthermore, as shown in Table 3 all constructions available are
proven secure against a weak adversary only and provide amortized efficiency. Thus, how to
build efficient solutions that are secure against strong adversaries is still an open question.
Moreover, currently FHE cannot be considered a practical tool.

The schemes using homomorphic authentication (see Table 4) are more restrictive with respect
to the supported function class. Furthermore, all schemes only provide amortized efficiency.
This is due to an expensive preprocessing stage which is computationally dominated by the
costs for authenticating or signing data. Note that in some use cases only authenticated data
is processed anyway. Here the preprocessing stage can be omitted making these schemes much
more efficient. The solutions using homomorphic signature schemes even provide public verifi-

WP: WP5 Deliverable: D5.8 Page: 35 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Scheme Function Class A P Primitives E PV

[BFR13a] Poly. of Degree 2 S × Bilinear Maps A ×
[CKV10] Poly of Fixed Degree S × Multilinear Maps A ×
[CFGN14] Poly of Fixed Degree S × Multilinear Maps A ×
[FGP14] Poly of Degree 2 S I Bilinear Maps A ×
[CFN15] Linear S × Bilinear Maps A X
[CFW14] Poly of Fixed Degree S × Multilinear Maps A X
[CFGV13] Poly of Fixed Degree S × RSA A X
[LDPW14] D D I/O HE/HEA D D

Table 4: Authenticator Based Verifiable Computation Schemes. Legend: A . . . adversary,
P. . . privacy, E. . . efficiency, PV. . . public verifiability

ability. Furthermore, the generic construction proposed by Lai et al. [LDPW14] allows to com-
bine authentication based verifiability with encryption gaining a verifiable computing scheme
preserving input-output privacy. Nevertheless, the function class, security, and efficiency de-
pends on the underlying primitives and further research is required for identifying promising
instantiations for different applications.

Scheme Function Class A P Primitives E PV

[PRV12] Boolean Functions ∅ × ABE A ×
[BF12] D S I/O FE,MAC,FHE,PE A X
[BGI14] Arithm. Circuits W × FS D X

Table 5: FE and FS based Verifiable Computation Schemes. Legend: A . . . adversary,
P. . . privacy, E. . . efficiency, PV. . . public verifiability

Another line of research are verifiable computing schemes based on functional encryption or
functional signatures (cf. Table 5). The authors of [PRV12], for instance, introduced a primitive
built on attribute based encryption. However, for this construction the security has not been
analysed yet. The other FE based approach introduced by Barbosa and Farshin [BF12] is generic
but requires FE for general predicates and can thus not be considered practical yet. Another
very interesting approach is to build verifiable computing schemes from functional signatures.
Also in this direction more research can be done to allow for a scheme that is efficient and secure
against the strong adversary.

Besides the main research directions, i.e., proof based, FHE based, authenticator based, and
functional encryption/signature based verifiable schemes, there are also several solutions for
specific applications, see Table 6. If their properties meet the requirements of the application
to be implemented these constructions can also be considered.

The summary shows that the only verifiable computing scheme that achieves efficiency over a
single instantiation is a proof based solution. In addition, this line of research has produced
constructions that support the most general classes of functions, e.g., general loops and stateful
operations. On the downside, their security has not been proven yet, some solutions rely on non-
falsifiable assumptions, and privacy is not addressed. Thus, if a verifiable computing scheme

WP: WP5 Deliverable: D5.8 Page: 36 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

Scheme Function Class A P Primitives E PV

[PST13] Poly. + Derivations S × Bilinear Maps A X
[ZML14] Inversions of Homomorphismss S × ∅ A ×
[CCM+10] Bilinear Maps S × Bilinear Maps A ×
[FGP14] Univariate Poly. S I Bilinear Maps A ×
[BGV11b] Poly of Fixed Degree S × Bilinear Map A ×
[KPP+14] Set Operations W × QPP A X

Table 6: Other Verifiable Computation Schemes. Legend: A . . . adversary, P. . . privacy,
E. . . efficiency, PV. . . public verifiability

providing input-output privacy for a wide class of functions is needed, one currently has to rely
on inefficient approaches using fully homomorphic encryption. Their additional shortcomings
are, however, that they are only proven secure against the weak adversary and that they come
with an expensive preprocessing phase. However, use cases that allow the termination of a pro-
tocol as soon as one single input is rejected and that do not require an efficiency preprocessing
phase may still use this line of research. Verifiable computing schemes that are authenticator
based are proven secure against an adaptive adversary and some solutions even provide public
verifiability and/or input-output privacy. On the downside they are currently very restricted
with respect to the function class provided. Note however that the operations supported in-
clude a huge amount of statistical operations and can therefore be of interest for many concrete
instantiations. Furthermore, with respect to the approach providing input-output privacy, more
research has to be done regarding an instantiation gaining (amortized) efficiency. Apart from the
numerous solutions based on proofs, homomorphic encryption, and homomorphic authentica-
tion, also other promising approaches, e.g., based on functional encryption, based on functional
signatures, and tailored to specific applications, have been proposed. The properties of the con-
struction using functional signatures, for instance, depend on the signature scheme used. Thus,
with developing efficient functional signatures also the potential of this approach will increase.

WP: WP5 Deliverable: D5.8 Page: 37 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

9 Conclusion

This work shows that the field of verifiable computing, although not very old, has made huge
improvements over the last years. Various solutions have been found for different function
classes. The concrete practicality of schemes depends on the server’s computational overhead,
which in turn often depends on the efficiency of the primitives used in the verifiable computing
scheme. So advances in fields like FHE, pairings, multilinear maps, circuit generation, or garbled
circuits will each be beneficial for the state of the art in verifiable computing. Note that so far
there is only one scheme where both, the time required for generation and verification is o(T),
where T is the time required to compute the function.

Another requirement that is very important, but only sparely provided in a strong adversary
setting, is privacy. There are several attempts to combine verifiable computing schemes secure
against adaptive adversaries with privacy preserving ones. However, there are no instantiations
so far that allow to build a construction that at the same time is secure in the strong adversary
model and provides efficiency and privacy. For many applications such a primitive would be
very valuable. Thus, developing a corresponding solution is an interesting task for future work.

In Prismacloud we aim at providing verifiable computing solutions for an e-Health use case.
After identifying the function class that needs to be supported we will collect all candidates that
fulfil the requirements, select the best approach, and integrate it into our toolbox. Furthermore,
we aim at improving the state of the art. Possible directions are to identify and improve suitable
instantiations for the generic construction proposed by Lai et al. [LDPW14] and Boyle et al.
[BGI14].

WP: WP5 Deliverable: D5.8 Page: 38 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

References

[ABC+15] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela
Jäschke, Christian A. Reuter, and Martin Strand. A guide to fully homomor-
phic encryption. Cryptology ePrint Archive, Report 2015/1192, 2015. http:

//eprint.iacr.org/.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new charac-
terization of NP. J. ACM, 45(1):70–122, 1998.

[BBFR15] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk. AD-
SNARK: nearly practical and privacy-preserving proofs on authenticated data. In
2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, pages 271–286, 2015.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In Innovations in Theoretical Computer Science 2012, Cambridge, MA,
USA, January 8-10, 2012, pages 326–349, 2012.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. Snarks for C: verifying program executions succinctly and in zero knowledge.
In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, pages 90–108,
2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In TCC, pages
315–333, 2013.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. In Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014.,
pages 781–796, 2014.

[BF12] Manuel Barbosa and Pooya Farshim. Delegatable homomorphic encryption with
applications to secure outsourcing of computation. In Topics in Cryptology - CT-
RSA 2012 - The Cryptographers’ Track at the RSA Conference 2012, San Francisco,
CA, USA, February 27 - March 2, 2012. Proceedings, pages 296–312, 2012.

[BFKW09] Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters. Signing a
linear subspace: Signature schemes for network coding. In Public Key Cryptography
- PKC 2009, 12th International Conference on Practice and Theory in Public Key
Cryptography, Irvine, CA, USA, March 18-20, 2009. Proceedings, pages 68–87,
2009.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, pages 21–31, 1991.

WP: WP5 Deliverable: D5.8 Page: 39 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

http://eprint.iacr.org/
http://eprint.iacr.org/
https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

[BFR13a] Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delegation of
computation on outsourced data. In 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,
pages 863–874, 2013.

[BFR+13b] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty, Andrew J.
Blumberg, and Michael Walfish. Verifying computations with state. In ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington,
PA, USA, November 3-6, 2013, pages 341–357, 2013.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P.
Vadhan. Short pcps verifiable in polylogarithmic time. In 20th Annual IEEE
Conference on Computational Complexity (CCC 2005), pages 120–134, 2005.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P.
Vadhan. Robust pcps of proximity, shorter pcps, and applications to coding. SIAM
J. Comput., 36(4):889–974, 2006.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseu-
dorandom functions. In Public-Key Cryptography - PKC 2014 - 17th International
Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires,
Argentina, March 26-28, 2014. Proceedings, pages 501–519, 2014.

[BGV11a] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation
of computation over large datasets. In Advances in Cryptology - CRYPTO 2011 -
31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings, pages 111–131, 2011.

[BGV11b] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic
encryption without bootstrapping. Electronic Colloquium on Computational Com-
plexity (ECCC), 18:111, 2011.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Theory of Cryptography - 8th Theory of Cryptography Conference,
TCC 2011, pages 253–273, 2011.

[CCM+10] Benôıt Chevallier-Mames, Jean-Sébastien Coron, Noel McCullagh, David Naccache,
and Michael Scott. Secure delegation of elliptic-curve pairing. In Smart Card Re-
search and Advanced Application, 9th IFIP WG 8.8/11.2 International Conference,
CARDIS 2010, Passau, Germany, April 14-16, 2010. Proceedings, pages 24–35,
2010.

[CFGN14] Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo. Generalizing
homomorphic macs for arithmetic circuits. In Public-Key Cryptography - PKC 2014
- 17th International Conference on Practice and Theory in Public-Key Cryptogra-
phy, Buenos Aires, Argentina, March 26-28, 2014. Proceedings, pages 538–555,
2014.

WP: WP5 Deliverable: D5.8 Page: 40 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

[CFGV13] Dario Catalano, Dario Fiore, Rosario Gennaro, and Konstantinos Vamvourellis.
Algebraic (trapdoor) one-way functions and their applications. In TCC, pages
680–699, 2013.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable
computation. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015, pages 253–270, 2015.

[CFN15] Dario Catalano, Dario Fiore, and Luca Nizzardo. Programmable hash functions go
private: Constructions and applications to (homomorphic) signatures with shorter
public keys. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II,
pages 254–274, 2015.

[CFW14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures
with efficient verification for polynomial functions. In Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part I, pages 371–389, 2014.

[CKV10] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation
of computation using fully homomorphic encryption. In Advances in Cryptology
- CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 15-19, 2010. Proceedings, pages 483–501, 2010.

[CMP14] Dario Catalano, Antonio Marcedone, and Orazio Puglisi. Authenticating compu-
tation on groups: New homomorphic primitives and applications. In Advances in
Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and
Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, pages 193–212, 2014.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA, pages 151–158, 1971.

[CRR12] Ran Canetti, Ben Riva, and Guy N. Rothblum. Two protocols for delegation of
computation. In Information Theoretic Security - 6th International Conference,
ICITS 2012, Montreal, QC, Canada, August 15-17, 2012. Proceedings, pages 37–
61, 2012.

[CSL+15] Xiaofeng Chen, Willy Susilo, Jin Li, Duncan S. Wong, Jianfeng Ma, Shaohua Tang,
and Qiang Tang. Efficient algorithms for secure outsourcing of bilinear pairings.
Theoretical Computer Science, 562(0):112 – 121, 2015.

[FGP14] Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable compu-
tation on encrypted data. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, AZ, USA, November 3-7,
2014, pages 844–855, 2014.

WP: WP5 Deliverable: D5.8 Page: 41 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

[Fre12] David Mandell Freeman. Improved security for linearly homomorphic signatures:
A generic framework. In Public Key Cryptography - PKC 2012 - 15th Interna-
tional Conference on Practice and Theory in Public Key Cryptography, Darmstadt,
Germany, May 21-23, 2012. Proceedings, pages 697–714, 2012.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In CRYPTO, pages 186–194, 1986.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49, 2013.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Advances in Cryptology
- CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 15-19, 2010. Proceedings, pages 465–482, 2010.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Pro-
ceedings, pages 626–645, 2013.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating com-
putation: interactive proofs for muggles. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, pages 113–122, 2008.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS 2006,
pages 89–98, 2006.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
99–108, 2011.

[GW13] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators.
In Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Security, Bengaluru,
India, December 1-5, 2013, Proceedings, Part II, pages 301–320, 2013.

WP: WP5 Deliverable: D5.8 Page: 42 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without
short PCPs. In 22nd Annual IEEE Conference on Computational Complexity (CCC
2007), 13-16 June 2007, San Diego, California, USA, pages 278–291, 2007.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In Proceedings of the 24th Annual ACM Symposium on Theory of Com-
puting, May 4-6, 1992, Victoria, British Columbia, Canada, pages 723–732, 1992.

[KPP+14] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mah-
moud F. Sayed, Elaine Shi, and Nikos Triandopoulos. TRUESET: faster verifiable
set computations. In Proceedings of the 23rd USENIX Security Symposium, San
Diego, CA, USA, August 20-22, 2014., pages 765–780, 2014.

[LDPW14] Junzuo Lai, Robert H. Deng, HweeHwa Pang, and Jian Weng. Verifiable compu-
tation on outsourced encrypted data. In Computer Security - ESORICS 2014 -
19th European Symposium on Research in Computer Security, Wroclaw, Poland,
September 7-11, 2014. Proceedings, Part I, pages 273–291, 2014.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In 2013 IEEE Symposium on Security and Pri-
vacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 238–252, 2013.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In Theory
of Cryptography - 9th Theory of Cryptography Conference, TCC 2012, Taormina,
Sicily, Italy, March 19-21, 2012. Proceedings, pages 422–439, 2012.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of cor-
rect computation. In TCC, pages 222–242, 2013.

[SBV+13] Srinath T. V. Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan
Parno, and Michael Walfish. Resolving the conflict between generality and plau-
sibility in verified computation. In Eighth Eurosys Conference 2013, EuroSys ’13,
Prague, Czech Republic, April 14-17, 2013, pages 71–84, 2013.

[SMBW12] Srinath T. V. Setty, Richard McPherson, Andrew J. Blumberg, and Michael Wal-
fish. Making argument systems for outsourced computation practical (sometimes).
In 19th Annual Network and Distributed System Security Symposium, NDSS 2012,
San Diego, California, USA, February 5-8, 2012, 2012.

[SVP+12] Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blum-
berg, and Michael Walfish. Taking proof-based verified computation a few steps
closer to practicality. In Proceedings of the 21th USENIX Security Symposium,
Bellevue, WA, USA, August 8-10, 2012, pages 253–268, 2012.

WP: WP5 Deliverable: D5.8 Page: 43 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology - EUROCRYPT 2005, pages 457–473, 2005.

[TC14] Chunming Tang and Yuenai Chen. Efficient non-interactive verifiable outsourced
computation for arbitrary functions. IACR Cryptology ePrint Archive, 2014:439,
2014.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II, pages 71–89, 2013.

[TRMP12] Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. Ver-
ifiable computation with massively parallel interactive proofs. In 4th USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud’12, Boston, MA, USA,
June 12-13, 2012, 2012.

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid
architecture for interactive verifiable computation. In 2013 IEEE Symposium on
Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 223–
237, 2013.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexe-
cuting them. Commun. ACM, 58(2):74–84, 2015.

[WSR+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and
Michael Walfish. Efficient RAM and control flow in verifiable outsourced computa-
tion. In 22nd Annual Network and Distributed System Security Symposium, NDSS
2015, San Diego, California, USA, February 8-11, 2014, 2015.

[XAG14] Gang Xu, George T. Amariucai, and Yong Guan. Verifiable computation with
reduced informational costs and computational costs. In Computer Security - ES-
ORICS 2014 - 19th European Symposium on Research in Computer Security, Wro-
claw, Poland, September 7-11, 2014. Proceedings, Part I, pages 292–309, 2014.

[XAG15] Gang Xu, George T. Amariucai, and Yong Guan. Block programs: Improving
efficiency of verifiable computation for circuits with repeated substructures. In
Proceedings of the 10th ACM Symposium on Information, Computer and Commu-
nications Security, ASIA CCS ’15, Singapore, April 14-17, 2015, pages 405–416,
2015.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982, pages 160–164, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada,
27-29 October 1986, pages 162–167, 1986.

WP: WP5 Deliverable: D5.8 Page: 44 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

Privacy and Security Maintaining Services in the Cloud
Overview of Verifiable Computing Techniques Providing Private and Pub-
lic Verification

[ZML14] Fangguo Zhang, Xu Ma, and Shengli Liu. Efficient computation outsourcing for
inverting a class of homomorphic functions. Inf. Sci., 286:19–28, 2014.

[ZS14] Liang Feng Zhang and Reihaneh Safavi-Naini. Generalized homomorphic macs with
efficient verification. In ASIAPKC’14, Proceedings of the 2nd ACM Wookshop on
ASIA Public-Key Cryptography, June 3, 2014, Kyoto, Japan, pages 3–12, 2014.

[ZSL14] Liang Feng Zhang, Reihaneh Safavi-Naini, and Xiao Wei Liu. Verifiable local com-
putation on distributed data. In Proceedings of the Second International Workshop
on Security in Cloud Computing, SCC@ASIACCS ’14, Kyoto, Japan, June 3, 2014,
pages 3–10, 2014.

WP: WP5 Deliverable: D5.8 Page: 45 of 45
Reference: prismacloud.eu Dissimination: PU Version 1.0 Status: Final

https://prismacloud.eu/

	Introduction
	Roadmap
	Organisation

	Preliminaries
	Verifiable Computation
	Properties of Verifiable Computing Schemes
	Security
	Privacy
	Efficiency

	Proof Based Verifiable Computing
	Interactive Proof Based Approaches
	Interactive Argument Based Approaches
	Non-Interactive Argument Based Approaches

	Verifiable Computing from Fully Homomorphic Encryption
	Homomorphic Authenticators
	Message Authentication Codes
	Definitions for Message Authentication Codes
	Verifiable Computing Schemes Based on MACs

	Homomorphic Signatures
	Definitions for Homomorphic Signatures
	Signature Based Verifiable Computing on Linear Functions
	Signature Based Verifiable Computing for Polynomial Functions

	Signature Based Verifiable Computing Using Homomorphic Encryption

	Verifiable Computing Frameworks From Functional Encryption and Functional Signatures
	Verifiable Computation from Functional Encryption
	Verifiable Computation from Functional Signatures

	Verifiable Computing for Specific Applications
	Analysis of the State of the Art
	Conclusion

