
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/306032623

PBFT	and	Secret-Sharing	in	Storage	Settings

Conference	Paper	·	April	2016

CITATION

1

READS

69

3	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Identity	Mixer	View	project

Special	session	-	(BDA-CS)	at	EMERGING	2016	View	project

Andreas	Happe

AIT	Austrian	Institute	of	Technology

18	PUBLICATIONS			256	CITATIONS			

SEE	PROFILE

Stephan	Krenn

AIT	Austrian	Institute	of	Technology

38	PUBLICATIONS			319	CITATIONS			

SEE	PROFILE

Thomas	Lorünser

AIT	Austrian	Institute	of	Technology

51	PUBLICATIONS			629	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Thomas	Lorünser	on	23	December	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/306032623_PBFT_and_Secret-Sharing_in_Storage_Settings?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/306032623_PBFT_and_Secret-Sharing_in_Storage_Settings?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Identity-Mixer?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Special-session-BDA-CS-at-EMERGING-2016?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas_Happe?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas_Happe?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/AIT_Austrian_Institute_of_Technology?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas_Happe?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephan_Krenn?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephan_Krenn?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/AIT_Austrian_Institute_of_Technology?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephan_Krenn?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thomas_Loruenser?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thomas_Loruenser?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/AIT_Austrian_Institute_of_Technology?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thomas_Loruenser?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thomas_Loruenser?enrichId=rgreq-19c91558b7aeee287b89b20273491e79-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAzMjYyMztBUzo0NDI1NjQ2MzQ1MTc1MDRAMTQ4MjUyNzAzOTE1MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Malicious Clients in Distributed Secret Sharing
Based Storage Networks?

Andreas Happe, Stephan Krenn, and Thomas Lorünser

AIT Austrian Institute of Technology GmbH, Vienna, Austria
{firstname.lastname}@ait.ac.at

Abstract. Multi-cloud storage is a viable alternative to traditional stor-
age solutions. Recent approaches realize safe and secure solutions by com-
bining secret-sharing with Byzantine fault-tolerant distribution schemes
into safe and secure storage systems protecting a user against arbitrarily
misbehaving storage servers.
In the case of cross-company projects with many involved clients it fur-
ther becomes vital to also protect the storage system and honest users
from malicious clients that are trying to cause inconsistencies in the sys-
tem. So far, this problem has not been considered in the literature.
In this paper, we detail the problems arising from a combination of se-
cret sharing with Byzantine fault-tolerance in the presence of malicious
clients, and provide first steps towards a practically feasible solution.

Keywords: distributed systems � secret sharing � malicious clients �
Byzantine fault-tolerance

1 Introduction

Cloud data storage often is a scalable and cost-efficient alternative to in-house
storage servers, in particular for user groups that traditionally lack professional
dedicated IT support such as consumers and SMEs. But besides obvious ad-
vantages, outsourcing storage into the cloud also poses various security risks
that do not exist in offline or in-house solutions, in particular concerning the
confidentiality and integrity of the stored data.

For this reason, initial solutions encrypted data locally before transferring it
to a single cloud provider. For better availability and to prevent vendor lock-
in, advanced solutions distribute data between multiple clouds, e.g., by storing
multiple replicas. However, encryption might not always be an appropriate solu-
tion — in particular when storing highly sensitive data such as electronic health
records. This is because encryption can only hide the data computationally, and
it is virtually impossible to reliably estimate how cryptanalysis and an adver-
sary’s computational power will develop in the far future (just think of DES
which was assumed to offer sufficient security 40 years ago, and which can easily

? This work was in part funded by the European Commission under grant agreement
number 644962 (PRISMACLOUD).



be broken nowadays). Modern cloud storage systems based on secret sharing
scheme thus also offer the option to distribute the information in an redundant
yet information theoretically secure way, e.g., [8].

In parallel to this development of cloud storage and due to the increased
availability of high-bandwidth Internet connections, also the usage changed: from
pure archiving systems to data sharing and collaborative development systems.
Therefore, protocols handling concurrent user requests have been developed, e.g.,
to avoid that two users writing different versions of the same file at the same
time cause an inconsistency in the system. As a result, Byzantine fault tolerant
(BFT) algorithms that can cope with arbitrarily malicious storage servers have
been presented.

In this work we now consider the next evolutionary step of cloud storage:
multi-client secret sharing based storage systems that allow for secure collabo-
ration even in the presence of malicious users. This becomes necessary because
of the increasing number of participants working on joint projects — e.g, in case
of cross-company projects — where it must be assumed that an adversary will
eventually gain access to some user’s login credentials, and that he will then try
to boycott the project by causing an inconsistent state in the system.

In this document, we first describe selected complications that must be ad-
dressed by such protocols in Sec. 3 and then sketch mitigation strategies in
Sec. 4.

1.1 Related Work

Various secret sharing based storage systems have been proposed and imple-
mented (cf. [15]). We will briefly summarize the most relevant ones and discuss
their shortcomings when dealing with multiple potentially malicious clients.

Multiple cloud storage solutions [14,16] implement a proxy pattern: clients
communicate with a central server that in turn splits up data and distributes
it over multiple backend cloud storage providers. This creates a single point of
trust and failure within the proxy and thus fails our availability and privacy
needs.

RACS [1] utilizes erasure-coding to distribute data upon multiple cloud stor-
age providers. It’s use-case is prevention of vendor lock-in. Security and privacy
is of no concern, i.e., data is not encrypted. Parallel access to stored data through
multiple RACS instances is achieved through usage of Apache Zookeeper, which
implements the Zab primary-backup protocol for synchronization. This allows
for parallel client access but does neither protect the data’s security nor can it
cope with malicious Zookeeper nodes.

DEPSKY-CA [3] is a Byzantine fault-tolerant storage system. In its system
model, servers do not communicate with each other, clients must synchronize
access to files through a low-contention lock mechanism that uses cloud-backed
lock files for synchronization. While being obstruction-free this mechanism is
not safe in face of malicious clients. Similarly, Belisarius [9] integrates robust



versions of secret sharing with BFT protocols, but explicitly forbids malicious
clients.

Summarizing, existing proposals and solutions are dealing with information
dispersal mechanisms for remote data storage, they are using secret sharing to
protect confidentiality and some of them deal with Byzantine robustness. To the
best of our knowledge, however, none of them supports full concurrency for a
multi-user environment while allowing for malicious clients.

2 Preliminaries

In the following we briefly recap the necessary background on secret sharing and
Byzantine fault tolerance.

2.1 Secret Sharing and Information Dispersal

In threshold secret secret-sharing schemes, a dealer splits up data d into n shares,
such that at least k ≤ n of these shares are needed to reconstruct the original
data. Conversely, an attacker with access to less than k cannot gain any in-
formation about d. Basic secret sharing schemes assume that at reconstruction
time, shares are either correct or missing. Robust secret sharing schemes are able
to detect and cope with maliciously altered shares. Conversely, verifiable secret
sharing schemes can be used to detect dealers who are creating and distribut-
ing inconsistent shares, by enabling storage nodes to (jointly) verify that they
received consistent shares.

As an extension to basic secret sharing schemes, verifiable secret sharing
(VSS) offers protection against malicious dealers. That is, in a VSS scheme the
share holders can efficiently verify that they received consistent shares without
violating the confidentiality of the shared message, cf., e.g., [11].

2.2 PBFT Standard Implementation

This section gives an overview of the pbft protocol [4], which is the most preva-
lent BFT protocol for storage solutions. For clarity of presentation, we present
the protocol in its vanilla form, and omit any possible performance optimization.

pbft assumes a system consisting of n nodes (or replicas), which are con-
nected through authenticated and private channels. At most f = bn−1

3 c nodes
may be faulty. Exactly one replica is designated as primary. The system moves
through a sequence of views, where the primary replica might be changed with
every view-change in order to cope with malicious primaries. The view-concept
introduces the concept of bounded synchronicity into an otherwise asynchronous
system.

In the following we describe the normal mode of operation of pbft. For error
handling mechanisms we refer to the original literature [4].



Client

Primary

Replica

Replica

Replica

R
E

Q
U

E
S
T

P
R

E
-P

R
E

P

P
R

E
P

A
R

E

C
O

M
M

IT

R
E

S
U

L
T

(a) PBFT/SS

INITstart

PRE-PREPARED

PREPARED

COMMITED

if PRIMARY
if not PRIMARY and
PREPREPARE received

≥2f PREPAREs
and PREPREPARE

received

≥2f+1 COMMIT received

(b) Node

Fig. 1: Black arrows describe the message flow of the vanilla pbft protocol. The
dashed blue arrows show the extension discussed in §3.

Normal operation and transaction state-machine. In pbft a client sends the
operation to the designated primary node. The primary associates an unique
counter and broadcasts the operation and the counter to all other replicas
as PREPREPARE message. Upon receiving this message all replicas broadcast a
PREPARE message including a hash of the operation and its sequence number.
If more than 2f + 1 prepare messages (including one’s own) are received by a
replica, it broadcasts a COMMIT message. After 2f +1 matching COMMIT messages
have been collected by a replica and all transactions with lower sequence num-
bers have been performed, the requested operation is executed and the result
sent to the original client. After f + 1 matching results the client knows the op-
eration’s result. The archetypal message flow diagram as well as state diagram
describing a single operation/transaction can be seen in Figure 1.

3 Integration Issues with Secret Sharing

Integrating secret sharing into the pbft model is far from trivial: the pbft
protocols sketched above rely on the fact that all replicas contain the same data,
which is not the case for a secret sharing based storage where each node receives
a distinct share which does not allow for reconstructing the original data.

Consequently, the core pbft protocol must be altered to allow for per-replica
shares. This leads to various issues, including:

Matching client-requests: In the original pbft protocol, the client transmits
operation requests to the primary which in turn distributes them to all other



replicas. As the operation requests might also include data, this is not ap-
plicable in the new setting, as no replica is supposed to learn the original
data.
A natural modification of the original scheme thus seems to be to split up the
operation into secret-shared data and plaintext (such as type of operation,
etc.). The client would now transfer the same metadata and distinct shares
directly to each single replica and let the replicas match this data to the
primary’s PREPREPARE message; the possible protocol flow is depicted in
Figure 1. The main challenge in this approach now is how this matching of
can be done reliably, in particular if the client sent duplicate, incomplete, or
inconsistent requests to the system.

Clients providing inconsistent shares: A malicious client might send incon-
sistent shares to the replicas within a single valid operation request. Now,
in the original pbft protocol, a digest over the initial client message — con-
taining the operation (comprising the data), a timestamp, and the an client
identifier — is utilized as identifier and checked for consistency.
For pbft/ss, this approach could only be applied to the metadata, but not
to the data itself, as digests of different shares will not match, and thus
consistency cannot be assured in this way.
It is thus required to efficiently detect inconsistent shares within a request
that is valid from a pbft point of view.

Clients submitting “consistent garbage”: A malicious client can, while con-
firming to the pbft protocol, provide consistent shares that contain destruc-
tive payloads, e.g., by overwriting sensitive files with consistent shares of
random bits. This is a generic problem and needs to be addressed in any
meaningful multi-client system.

Besides these client-related issues, integrating secret sharing into pbft also
causes numerous further problems, including:

Verifying operation results: In non-secret-shared pbft clients can verify an
operation’s result by comparing the replica’s return values. Similar to before,
because of different replica starting with different input, an operation cannot
be verified by simply checking return values for equality.

Checkpointing protocol: Replicas periodically perform protocols where a check
sum over the replicas’ data is utilized to detect anomalies. Secret-sharing
prevents simple hashing schemes as replicas do not contain the same data.

State-transfer, recovery and pro-activity: Those are important aspects of
long-running systems. Protocols needed for those functions again have to be
augmented to be able to cope with secret-shared data.

4 Our Approach

We now address the mentioned issues regarding malicious clients in byzantine
secret-shared storage networks. We always detail the simplest solution, further
performance improvements are mentioned if applicable.



Client

Primary

Replica

Replica

Replica

R
E

Q
U

E
S
T

(c
o
m

p
)

P
R

E
-P

R
E

P
(e

ch
o
)

P
R

E
P

A
R

E
(e

ch
o
)

C
O

M
M

IT
(r

ea
d
y
)

R
E

S
U

L
T

(a) PBFT/VSS

AsyncVSS BFT

Phase Message Message

Sharing send REQUEST
Sharing echo PRE-PREPARE

PREPARE
Sharing ready COMMIT
Reconstruct - after COMMIT phase,

before operation execution

(b) Mapping AsyncVSS onto BFT

Fig. 2: Integration of VSS with the modified BFT protocol.

4.1 Matching client-requests

Implicit matching of client requests over their shared meta-data (e.g. type of
operation, file names, timestamp) can be performed relatively easy as all needed
meta-data is part of the plain-text message portion, i.e. is not secret-shared.
Clients submit their operations over authentic and integrity-protected channels:
if malformed or non-matching meta-data is detected, a malicious client is indi-
cated.

The client-provided meta-data is utilized as simple identifier, i.e. can easily
be generated by using a digest over each request’s metadata. To improve perfor-
mance, clients can implement an explicit id scheme, i.e. unique client-assigned
identifiers (e.g. random number) per matching requests. This identifiers are then
used to match the requests. If a malicious client submits non-matching identifiers
or reuses them, the resulting transactions never complete and are detected by
either a timeout mechanism or during the eventual execution of the view-change
protocol.

As this leads to increased processing and memory utilization node-side, rate-
limits might be required to counter denial of service attacks. A simple solution—
e.g. rate limiting each client through an exponential backoff algorithm based
upon the per-client mismatch detection rate—should be sufficient for the initial
system prototype.

4.2 Clients providing inconsistent shares

To detect inconsistent shares sent to the replicas, a verifiable secret sharing
scheme (VSS) can be used. This allows the replicas to detect the inconsistency,



but imposes computational and messaging overhead. However, to reduce the
messaging overhead non-interactive VSS schemes [11] could be integrated into
the pbft protocol in order to simulate an asynchronous VSS [10]. Initial work on
integration of the AsyncVSS protocol[2] has shown that VSS-protocols can be
piggy-backed upon our existing BFT/SS protocol. AsyncVSS is an asynchronous
computational-secure protocol requiring a minimal replica count of >= 3f + 1
thus providing a good match to our similar BFT requirements. Figure 2a shows
the resulting protocol, Table 2b matches AsyncVSS phases and messages to BFT
messages used in our storage protocol. No new BFT messages were required as
all AsyncVSS messages were integrated into our BFT/SS protocol. Another
benefit of this approach is, that the VSS information—i.e. that a client provided
matching shares—is generated exactly before the replicas would execute and
commit the corresponding operation. Replicas are thus able to detect malicious
data before they would execute the corresponding operation.

Further efficiency improvements can be derived from the realization that a
single operation usually comprises many secret shared blocks.1 Batch techniques
for VSS can be used to minimize the computational and messaging overhead [6].

Alternatively, servers could employ versioning to perform “speculative” ac-
ceptance: operations produce new versions while the old data version is kept
until a client certificates that the data was received correctly. This approach is
well known in the BFT world, e.g. the ‘Zyzzyva” family of BFT algorithms[5]
improves the performance of PBFT algorithms by utilizing speculative operation
execution. Other byzantine systems allow for unconditional command execute
and depend upon subsequent (probabilistic) error detection[12]. In both situ-
ations, an error detection mechanism must be embedded in order to allow for
rollback actions.

However, versioning impacts security mechanisms, and therefore needs to be
handled with care. The following section details issues that arise from utilizing
speculative execution and versioning.

4.3 Clients submitting “consistent garbage”

An issue inherent to every storage solution are malicious clients that submit
formally correct but semantically destructive operations. Typical examples are
malicious users purposefully deleting compromising documents or the recent
wave of encryption-based ransomware programs[13]. The mentioned versioning
approach can be reused to mitigate the risk associated with evil clients. If ma-
licious alterations are detected, a non-altered prior version of the document can
be restored.

As only non-malicious clients can attest that an operation was semantically
correct, there’s a trade-off between storage and availability of older data versions.
Versioning adds a “speculative” phase to stored documents’ life cycle. This phase
starts after each data alteration operation and ends after a quorum of clients did

1 Secret sharing is usually applied on a several-byte level, while typical file sizes are
in the range of MBs.



perform read operations upon the same data without any subsequently reported
integrity violations.

Also the selection of trustworthy clients needs to be solved on a per-deployment
base, examples includes selection through policy or achieving a quorum of con-
sistent clients.

Versioning allows for performance and efficiency improvements as additional
meta-data is implicitly available at the storage-server. This metadata (i.e. Change
or Commit information) allows detection of causal dependencies between opera-
tions and might be utilized to introduce weaker—but more efficient—consistency
models such as causal consistency (instead of the currently used sequential con-
sistency model[7]).

5 Future Work

Metadata privacy is a challenging question which could be explored in further
research. The main issue arises from trade-offs between metadata privacy, per-
formance, and the possibility of multi-user access, especially in face of malicious
users. Fully private metadata management places all metadata tasks at the client
and thus severely limits exploitation of parallelization – preventing performance
benefits – at the server level. Increased client-side state automatically increases
opportunities for client-side attacks and thus poses new challenges in a fully
Byzantine setting.

References

1. Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: Racs: a case for cloud storage
diversity. In: 1st ACM Symposium on Cloud Computing. pp. 229–240. ACM (2010)

2. Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited.
In: Advances in Cryptology–ASIACRYPT 2011, pp. 590–609. Springer (2011)

3. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: Depsky: dependable
and secure storage in a cloud-of-clouds. ACM Transactions on Storage (TOS) 9(4),
12 (2013)

4. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance and Proactive Recov-
ery. ACM Trans. Comput. Syst. 20(4), 398–461 (Nov 2002)

5. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. In: ACM SIGOPS Operating Systems Review. vol. 41,
pp. 45–58. ACM (2007)

6. Krenn, S., Lorünser, T., Striecks, C.: Batch Verifiable Secret Sharing (2016), in
preparation

7. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. Computers, IEEE Transactions on 100(9), 690–691 (1979)

8. Lorünser, T., Happe, A., Slamanig, D.: ARCHISTAR: Towards Secure and Robust
Cloud Based Data Sharing. In: IEEE (ed.) CloudCom 2015 (2015), in press

9. Padilha, R., Pedone, F.: Belisarius: BFT Storage with Confidentiality. In: Inter-
national Symposium on Network Computing and Applications. pp. 9–16. IEEE
(2011)



10. Patra, A., Choudhury, A., Pandu Rangan, C.: Efficient Asynchronous Verifiable
Secret Sharing and Multiparty Computation. Journal of Cryptology 28(1), 49–109
(Dec 2013)

11. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO 1991. LNCS,
vol. 576, pp. 129–140. Springer (1991)

12. Popescu, B.C., Crispo, B., Tanenbaum, A.S., Bakker, A.: Design and implementa-
tion of a secure wide-area object middleware. Computer Networks 51(10), 2484–
2513 (2007)

13. Savage, K., Coogan, P., Lau, H.: The evolution of ransomware (2015)
14. Selimi, M., Freitag, F.: Tahoe-lafs distributed storage service in community network

clouds. In: BdCloud 2014. pp. 17–24. IEEE (2014)
15. Slamanig, D., Hanser, C.: On Cloud Storage and the Cloud of Clouds Approach.

In: ICITST-2012. pp. 649–655. IEEE Press (2012)
16. Spillner, J., Bombach, G., Matthischke, S., Muller, J., Tzschichholz, R., Schill, A.:

Information dispersion over redundant arrays of optimal cloud storage for desktop
users. In: UCC 2011. pp. 1–8. IEEE (2011)

View publication statsView publication stats

https://www.researchgate.net/publication/306032623

	Malicious Clients in Distributed Secret Sharing Based Storage Networks

