
Analysis of Malleable Signatures for

Defining Allowed Modification and

Providing Verifiable Means of

Conformant Processing

(The Final Design of the FLEXAUTH Tool)

Deliverable D5.9

Editor Name Henrich C. Pöhls (UNI PASSAU)

Type Report

Dissem. Level PU

Release Date 31.05.2017

Version 1.0

Ref. Ares(2017)2739855 - 31/05/2017

Prismacloud Deliverable D5.9

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 644962.

More information available at https://prismacloud.eu.

Copyright Statement

The work described in this document has been conducted within the PRISMACLOUD
project. This document reflects only the PRISMACLOUD Consortium view and the
European Union is not responsible for any use that may be made of the information
it contains. This document and its content are the property of the PRISMACLOUD
Consortium. All rights relevant to this document are determined by the applicable laws.
Access to this document does not grant any right or license on the document or its contents.
This document or its contents are not to be used or treated in any manner inconsistent with
the rights or interests of the PRISMACLOUD Consortium or the Partners detriment and
are not to be disclosed externally without prior written consent from the PRISMACLOUD
Partners.

Each PRISMACLOUD Partner may use this document in conformity with the PRIS-
MACLOUD Consortium Grant Agreement provisions.

0 of 100

https://prismacloud.eu

Prismacloud Deliverable D5.9

Executive Summary

Prismacloud aims at bringing novel cryptographic concepts and methods to practical
application to improve the security and privacy of cloud based services and make them
usable for providers and users.

The purpose of this deliverable is to present the final version of the FLEXAUTH tool
including the architecture and the design of the tool, starting from terms and definitions,
over design paradigms and component model, to the static software architecture. This
tool provides means for flexible authentication protocols with selective disclosure and is
based on variants of malleable signature schemes , i.e., redactable signature schemes (RSS)
as well as group signature schemes (GSS). When verifying a signature with one of the
cryptographic schemes available through the FLEXAUTH tool, one verifies (directly or
indirectly) whether a certain piece of data is conformant to a certain policy. The special-
purpose signatures inside FLEXAUTH thus allow to verify the conformance with different
types of policies with different expressiveness. While the aforementioned aspects represent
a final iteration of content already present in Deliverable D5.6., we additionally present
research regarding the application of the FLEXAUTH tool beyond the application in the
e-Health and Smart City use-cases within Prismacloud.

1 of 100

Prismacloud Deliverable D5.9

Table of Contents

Executive Summary 1

1 Introduction 6

1.1 Scope of the Document . 7

1.2 Relation to Other Project Work . 7

1.3 Structure of the Document . 8

2 The FLEXAUTH Tool 9

2.1 Overview . 9

2.2 Tool Architecture . 9

2.3 Component Model . 9

2.4 Software Implementation . 11

2.5 Services Based on FLEXAUTH . 11

2.6 Terms and Definitions . 12

2.6.1 Signer . 12

2.6.2 Redactor/Sanitizer . 12

2.6.3 Issuer . 12

2.6.4 Opener . 12

2.6.5 Linker . 12

2.6.6 Verifier . 12

2.6.7 Message . 13

2.6.8 Accumulator . 13

2.6.9 Group . 13

2.6.10 Redaction . 13

2.6.11 Sanitization . 13

2.6.12 Signature Scheme . 13

2.6.13 Signature . 13

2.6.14 Group Signature . 14

2.6.15 Selective Disclosure Token . 14

2.6.16 Redacted Signature . 14

2.6.17 Sanitized Signature . 14

2.6.18 Group Signature Scheme . 14

2.6.19 Redactable Signature Scheme . 14

2.6.20 Sanitizable Signature Scheme . 14

2 of 100

Prismacloud Deliverable D5.9

2.6.21 Admissible Changes . 14

2.6.22 Modification Instructions . 15

2.6.23 Redacted Message . 15

2.6.24 Sanitized Message . 15

2.6.25 Verification key . 15

2.6.26 Signing key . 15

2.6.27 Sanitization key . 15

2.6.28 Issuing Key . 16

2.6.29 Opening Key . 16

2.6.30 Linking Key . 16

2.6.31 Controllable Linkability . 16

2.7 Malleable Signatures Library . 16

2.7.1 Abstract Description . 16

2.7.2 Architecture and Design of the Library 20

2.8 Group Signatures Library . 23

2.8.1 Abstract Description . 23

2.8.2 Architecture and Design of the Library 24

2.9 Recommendations . 25

3 The FLEXAUTH Tool in the Application Context 27

3.1 The eHealth Pilot . 27

3.2 The Smart City Pilot . 27

3.3 Research on Additional Applications . 28

3.3.1 Cryptographically Enforced Four-Eyes Principle 28

3.3.2 Accountable and Privacy Preserving Workflows 28

3.4 Extending Redactable Signatures with Additional Privacy Features 29

4 Conclusion 30

List of Acronyms 31

List of Figures 31

Bibliography 34

A Appendix 35

3 of 100

Prismacloud Deliverable D5.9

Document information

Project Context

Work Package WP5 Efficient and Secure Implementations

Task T5.3 Secure and privacy preserving processing of authenti-
cated data

Dependencies D4.4, D4.5, D4.6, D4.7, D5.6, D6.5, D6.6, D7.8

Author List

Organization Name E-mail

TU Graz Daniel Slamanig daniel.slamanig@tugraz.at

TU Graz David Derler david.derler@iaik.tugraz.at

UNI PASSAU Marek Klein km@sec.uni-passau.de

UNI PASSAU Henrich C. Pöhls hp@sec.uni-passau.de

UNI PASSAU Christoph Frädrich fraedric@fim.uni-passau.de

UNI PASSAU Paul Hoguth prismacloud-passau@sec.uni-passau.de

UNI PASSAU Christoph Hanschke prismacloud-passau@sec.uni-passau.de

Reviewer List

Organization Name E-mail

TUDA Lucas Schabhüser lschabhueser@cdc.informatik.tu-darmstadt.de

XiTRUST Katrin Riemer Katrin.Riemer@xitrust.com

4 of 100

Prismacloud Deliverable D5.9

Version History

Version Date Reason/Change Editor

0.1 2017-02-15 1st Draft Henrich C. Pöhls

0.2 2017-02-17 Added two joint results, which have
been published

Henrich C. Pöhls

0.3 2017-02-20 ToC draft Henrich C. Pöhls

0.4 2017-04-20 Updated content and ToC before
meeting

Henrich C. Pöhls

0.5 2017-04-23 Finalised ToC and some content Pöhls et al.

0.6 2017-05-25 Architecture updates; Applications
& Research items

D. Derler, D. Slamanig

0.7 2017-05-29 Version for Review all

1.0 2017-05-31 Incorporating Final Changes &
Comments

all

5 of 100

Prismacloud Deliverable D5.9

1 Introduction

The major purpose of this document is to describe the final iteration of the FLEXAUTH
tool. Following the Prismacloud architecture, FLEXAUTH is a tool (see Fig. 1) which
offers the software implementations of a set of special-purpose signature schemes. In
line with Prismacloud’s vision of a tool, FLEXAUTH bundles certain cryptographic
primitives and abstracts away their complexity by offering high level and easy to use
application programming interfaces (APIs). The architecture of FLEXAUTH is inspired
by the architecture of the Java cryptography extensions (JCE), which (1) ensures easy
extensibility in the sense that it is easy to extend the API to support other, related
schemes, and (2) allows to straight-forwardly switch between different implementations of
certain primitives with very little changes in the code which uses FLEXAUTH.

The FLEXAUTH API currently offers high-level access to redactable signature schemes
(RSS), which constitute a special form of malleable signature schemes (MSS), as well
as group signature schemes (GSS). In the context of RSS, the FLEXAUTH API uses a
generic approach to redactable signatures developed within WP 4 of Prismacloud (cf.
Deliverable D4.8). This generic approach to RSS is in line with our design philosophy, in
that it allows to generically instantiate redactable signatures from multiple diverse lower
level cryptographic building blocks. Our API reflects this design and allows to easily
control which underlying primitives are used in a concrete instantiation. For example one
can easily plug in code to generate signatures using a key which is stored in software,
but one can also easily plug in alternative, more sophisticated, means to generate the
signatures. In the context of GSS, the FLEXAUTH API follows the same principles and
it is designed in line with the most common model for dynamic group signatures (BSZ)
known and well accepted in the scientific community.

This report presents the final architecture and design for the set of software libraries that
in combination define the FLEXAUTH tool. Details on the implementation are already
presented in Deliverable D6.5 and a final iteration thereof will be presented in D6.6.

Within Prismacloud the prime application of the FLEXAUTH tool is within the eHealth
pilot as well as the Smart City pilot. Nevertheless, it needs to be stressed that the
design of FLEXAUTH is flexible and of course the provided schemes have applications in
various other domains. In particular, within Prismacloud we conducted research on the
applicability of this tool in other application scenarios and we present the results in this
deliverable.

Relation Between Title And Subtitle. Essentially, FLEXAUTH allows to verify
(directly or indirectly) whether a certain piece of data is conformant to a certain policy.
FLEXAUTH provides means to generate special-purpose signatures which allow to verify
the conformance with different types of policies with different expressiveness. The seman-
tics of such a policy thereby may vary from “only allowed modifications were applied to
a certain piece of data” as it is the case for MSS, to “the signed data stems from some
member of a group” as it is the case for GSS.

6 of 100

Prismacloud Deliverable D5.9

Primitives

Tools

Services

Applications

SSS

ABCRDC PIR

MSS

FSS

GSS ZKP

GRS SPE

kAN

Se
cu

re
O

bj
ec

t
St

or
ag

e

F
le

xi
bl

e
A

ut
he

nt
ic

at
io

n
w

it
h

Se
le

ct
iv

e
D

is
cl

os
ur

e

V
er

ifi
ab

le
D

at
a

P
ro

ce
ss

in
g

T
op

ol
og

y
C

er
ti

fic
at

io
n

D
at

a
P

ri
va

cy

Data
Sharing

Secure
Archiving

Selective
Authentic
Exchange

Privacy
Enhancing

IDM Verifiable
Statistics

Infrast.
Attestation Encryption

Proxy

Anonymi-
zation

Smart City eGovernment eHealth

Figure 1: Prismacloud architecture.

1.1 Scope of the Document

This deliverable is an iteration of Deliverable D5.6 and represents the final specification of
the FLEXAUTH tool offering flexible authentication with selective disclosure functionality.
Deliverable D5.6 already provided an outline of the architecture and a design of the tools,
starting from terms and definitions, over design paradigms and component model, to the
static software architecture. Compared to D5.6, this deliverable augments the software
architecture of the part of the tool that realizes GSS and in addition provides research
results investigating the use of the FLEXAUTH tool beyond the application within the
Prismacloud pilots.

1.2 Relation to Other Project Work

This deliverable relates to the WP4 and the corresponding research into cryptographic
primitives in that it offers a concrete design for the realization of these primitives in
software. This deliverable is thereby related to the deliverables D4.6 and D4.7, representing
First Year Research on Privacy-Enhancing Cryptography, as well as the Progress Report on

7 of 100

Prismacloud Deliverable D5.9

Privacy-Enhancing Cryptography, respectively. Moreover, cryptographic techniques used
in this report are also related to D4.4 Overview of Functional and Malleable Signature
Schemes. Finally, with D4.5, the (also related) final report on Signature Schemes Allowing
for Verifiable Operations on Authenticated Data is going to be delivered only two months
after this deliverable. The design of the tool is closely interlinked with the cryptographic
research done in WP4. This corresponds to Prismacloud’s development methodology
based on the 4-tier architecture that calls for a close cooperation between cryptographers
(WP4) and software developers (WP5 and WP6). It is embedded in Prismacloud’s
Cryptographic Service Development LiveCycle (CryptSDLC) that was described first in
D7.3 and shows how to blend security-by-design approaches with a workflow suitable for
cryptographic design.

With the tool and its functionality being described, this deliverable further lays the founda-
tions for upper layers of the Prismacloud architecture that incorporate the functionality
emitted by the tool (D7.4, D7.6, D7.8). In those deliverables the tools will be used to build
new cloud services that can offer stand alone privacy and security enhanced functionality,
or to build micro-services to be incorporated into existing cloud services to enhance their
privacy features. Finally, we also want to note that the description of the terminology
of group signatures and redactable signatures given in Section 2.6 is also very helpful
for future communication between cryptographers and developers and will help Pris-
macloud’s WP9 effort to communicate with a standardized set of terms. It might even
be used in Prismacloud’s strive to standardize redactable signature schemes (details on
the standardization efforts are/will be presented in the WP9 deliverables).

1.3 Structure of the Document

This deliverable is structured into two main sections. The first major section (Section 2)
constitutes a revision of Section 2 from D5.6 and delivers all the information on the final
design and architecture of the FLEXAUTH tool. In this section, we first give a high-level
overview of the tools structure and define terms and definitions which are important to
set the stage for the description of the respective tools. Then, we describe the component
model and the API design of the tools, including the underlying design paradigms. Finally,
we conclude with recommendations to be adhered for a secure implementation of the tools.
The second major section (Section 3) sets the FLEXAUTH tool into the context of the
pilot use cases of Prismacloud, and also presents our research on possible additional
applications beyond the pilot use cases of Prismacloud.

8 of 100

Prismacloud Deliverable D5.9

2 The FLEXAUTH Tool

On a high level, the flexible authentication with selective disclosure (FLEXAUTH) tool
allows to authenticate arbitrary messages (documents) so that a (dedicated) party can
selectively disclose partial information of the original message (document)—according to
some (well) defined rules—while the original signature (from the originator) remains valid.
In the most extreme case this just amounts to demonstrate that one is in possession of
some authenticated message from some signer with enhanced privacy, i.e., the message is
not disclosed and thus the disclosing party remains anonymous.

2.1 Overview

This tool heavily relies on malleable signature schemes (and in particular redactable sig-
natures and sanitizable signatures), i.e., signature schemes that allow to modify already
signed messages in a controlled way, without signer-interaction (access to the secret signing
key), while preserving the validity of the original signature respectively. Additionally, it re-
lies on the privacy-enhancing cryptographic primitive denoted as group signature schemes,
which allows users to join a group (getting issued a so called membership certificate by
some signer) and then be able to demonstrate possession of such a signature (which can
be used to authenticate any other message) without revealing the identity, i.e., only mem-
bership in a certain group is revealed.

2.2 Tool Architecture

The architecture of the FLEXAUTH tool is kept very simplistic (cf. Figure 2). Its main
functionality that is exposed to the Prismacloud services is encapsulated in two libraries,
i.e., the Malleable Signatures and the Group Signatures Libraries, both being entirely
developed within Prismacloud. The libraries itself can be extended with new algorithms
that are written as providers. The best example is the the IAIK JCE provider. All the
basic arithmetic and cryptographic functionality required by these two libraries is provided
by the IAIK JCE provider and specific functionality for elliptic curve and pairing based
cryptography is provided by its extension denoted ECCelerateTM.

2.3 Component Model

The abstract components of the FLEXAUTH tool are illustrated in Figure 3. Subse-
quently, we briefly point to how they are going to be used in the two Prismacloud
services related to this tool (because the single components are used differently in the two
services).

Authentication Component. Using the authentication component (Auth), an entity
can obtain a verifiably authentic version of a message. This may either be a conventional

9 of 100

Prismacloud Deliverable D5.9

Figure 2: Library components of the FLEXAUTH tool.

signature on some message (document) or may be a (special) signature by some entity
on some specific information (e.g., the certification of some group membership). Con-
sequently, the authentication component operates on (semi-)structured documents and
produces (malleable) signatures attesting the authenticity of the respective documents or
represent the joining of some well defined group. Thus, the choice of signature schemes
ranges from classical to redactable signatures (or sanitizable signatures) relying on any
conventional digital signature scheme (such as DSA, ECDSA, RSA-FDH/PSS) to the use
of more sophisticated privacy-enhancing schemes such as group signatures.

Figure 3: Abstract components of the FLEXAUTH tool.

Selective Disclosure Component. This component (Selective Disclosure) takes some
signed/certified message and produces a selective disclosure token. Depending on the ser-
vice, the selective disclosure token may have a different representation. For instance, in
case of malleable signatures, given a policy selective disclosure triggers an redaction or
sanitization process and the selective disclosure token represents an updated signature for
the non-redacted and/or updated information from the original message, which can be
presented to receivers. Here it is important to note that this component does not require
any interaction with or knowledge of secrets of the Auth component (i.e., does not require
the secret of the originator of the document, i.e., from the signer). Alternatively, the
Selective Disclosure component may take an arbitrary fresh message together with some
secret user information (corresponding to some well defined group of users) and the selec-
tive disclosure token produced by the component certifies anonymous membership in the
respective group and at the same time certifies the accompanied message.

Verification Component. Finally, we have a verification component (Verify), which
obtains a selective disclosure token produced by the Selective Disclosure component and
verifies its authenticity. Thereby, this component may provide different types of veri-

10 of 100

Prismacloud Deliverable D5.9

fication procedures. When using malleable signatures that rely on conventional digital
signatures or group signatures one obtains public verifiability (such that everyone can ver-
ify the authenticity). Moreover, when relying on specific schemes, there may also be other
modes of verification such as for designated verifiers only (here only designated verifiers
will be convinced of the authenticity of the received documents but can not convince any
other party of their authenticity).

2.4 Software Implementation

The libraries representing the FLEXAUTH tool are implemented in Java and, from a
design point of view, inspired by the Java Cryptography Architecture. While the design
of the libraries is detailed later in this document, we refer the reader to Deliverable D.6.5
for further implementation details and examples on how to use the libraries.

2.5 Services Based on FLEXAUTH

Subsequently, we briefly describe the two services based on the FLEXAUTH tool that are
implemented within Prismacloud.

Selective Authentic Exchange Service. This Prismacloud service enables users to
move their authentic documents to a cloud service and then delegate the sharing of selective
but authentic parts of these documents to other parties (who can verify their authenticity).
Thereby, this services realizes end-to-end authenticity in a sense that verifiers can be
ensured that the data comes from the original data source and the cloud has only performed
allowed modifications. But still, non-revealed information stays concealed. Moreover,
while the protection of the authenticity takes place in the beginning of the process by
the originator, the storage, selection and verification no longer require interactions with
(or secrets from) the originator. Thereby this service also tackles problems like vendor
lock-in or the need of the originator to provide these services and empowers the user to
freely choose where to store the authentic data without loosing the flexibility of selective
authentic exchange.

Privacy Enhancing ID Management Service. This Prismacloud service imple-
ments privacy enhancing identity-management. In particular, it allows users to obtain a
signature from some authority and then selective disclosure tokens (signatures) for the
respective user can be computed. Verifiers are then any party that needs to be assured of
the authenticity of a user and will so by being presented a selective disclosure token. A
prime functionality of this service is that the selective disclosure token does not reveal the
user’s identity, but only attests membership to some group.

11 of 100

Prismacloud Deliverable D5.9

2.6 Terms and Definitions

Subsequently, we define terms that are used within the description of the FLEXAUTH
tool.

2.6.1 Signer

Party that specifies admissible changes for a given message and uses the private singing
key to produce a redactable signature for the message supporting the given admissible
changes.

2.6.2 Redactor/Sanitizer

Party that when given a signature, the corresponding message and redaction/sanitization
information represented via modification instructions produces a redacted/sanitized signa-
ture for the redacted/sanitized message obtained by applying the modification instructions
to the given message.

2.6.3 Issuer

Party that holds a issuing key and issues a membership certificate to a user which certifies
the membership in a group.

2.6.4 Opener

Party that holds an opening key and when given a group signatures (a selective disclosure
token) is outputs the identity of the signer (producer of the selective disclosure token) and
potentially a proof certifying this fact.

2.6.5 Linker

Party that holds a linking key and when given two group signatures (selective disclosure
tokens) this party outputs whether both have been produced by the same anonymous
signer or not.

2.6.6 Verifier

Party that is given a (potentially redacted/sanitized within the scope of the admissible
changes) signature, the corresponding message and the signers’ public verification key and
checks whether the given signature is a valid signature for the given message under the
given verification key.

12 of 100

Prismacloud Deliverable D5.9

2.6.7 Message

A bit string representing the information to be signed, where the bit string may represent
an encoding of an arbitrary document format.

2.6.8 Accumulator

A cryptographic accumulator allows to accumulate a finite set of values into a single suc-
cinct value called accumulator. For every accumulated value, one can efficiently compute a
witness, which certifies its membership in the accumulator. However, it is computationally
infeasible to find a witness for any non-accumulated value.

2.6.9 Group

A (dynamic) group of users. In our context this group is associated to a group verification
key and every member of the group can anonymously issue group signatures (selective
disclosure tokens) on behalf of the group.

2.6.10 Redaction

Process in which the redactor produces a redacted signature of a given signature-message
pair according to given modification instructions. The input to the redaction process
may be an original signature-message pair or a signature-message pair obtained via the
(multiple) application of a redaction process.

2.6.11 Sanitization

Process in which the sanitizer with the help of the sanitization key produces a sanitized
signature of a given signature-message pair according to a given modification instructions.
The input to the sanitization process may be an original signature-message pair or a
signature-message pair obtained via the (multiple) application of a sanitization process.

2.6.12 Signature Scheme

A scheme that allows to produce signatures for messages using a secret signing key and
given a signature, a message and a public verification key to check its validity.

2.6.13 Signature

A piece of information produced using a signing key and attesting the authenticity of a
message.

13 of 100

Prismacloud Deliverable D5.9

2.6.14 Group Signature

A piece of information produced using a signing key and attesting the authenticity of a
message. The authenticity is with respect to a group of users instead of a single signer
and actually does not disclose the actual signer.

2.6.15 Selective Disclosure Token

A synonym for a group signature.

2.6.16 Redacted Signature

A signature produced by a redactable signature scheme that has been processed by a
redactor or several redactors (one after the other) running the redaction process with
respect to some non-trivial modification instructions.

2.6.17 Sanitized Signature

A signature produced by a sanitizable signature scheme that has been processed by a
sanitizer (via a sequence of sanitizations) running the sanitization process with respect to
some non-trivial modification instructions and the sanitization key.

2.6.18 Group Signature Scheme

A signature schemes that allows users to anonymously sign messages on behalf of a group
of users.

2.6.19 Redactable Signature Scheme

A signature scheme that supports redaction.

2.6.20 Sanitizable Signature Scheme

A signature scheme that supports sanitization.

2.6.21 Admissible Changes

Admissible changes describe all allowed modifications of a message to be signed with a
redactable/sanitizable signature scheme that can be applied within the redaction/san-
itization process without invalidating the redactable/sanitizable signature. Admissible

14 of 100

Prismacloud Deliverable D5.9

changes are called non-trivial, if the admissible changes allow at least one modification
of the original message yielding a redacted/sanitized message being different from the
original message.

2.6.22 Modification Instructions

Instructions that describe the message redaction/sanitization, i.e., how a message is going
to be redacted/sanitized by the reactor/sanitizer within a redaction/sanitization process.
Modification instructions are called non-trivial, if the given message and the redacted/san-
itized message are not identical.

2.6.23 Redacted Message

A message that is the output of the redaction process. It represents a message that is
derived from a given message using modification instructions (that are compatible with
the admissible changes specified during the process of producing the redactable signature
for the original message).

2.6.24 Sanitized Message

A message that is the output of the sanitization process. It represents a message that is
derived from a given message using modification instructions (that are compatible with
the admissible changes specified during the process of producing the sanitizable signature
for the original message) when given a sanitization key.

2.6.25 Verification key

A public information that corresponds to a secret signing key and allows the verification
of signatures.

2.6.26 Signing key

A secret information that is used to produce signatures for messages. This key may
be of different types depending on the signature scheme. It can be a signing key for a
conventional, a redactable, a sanitizable or a group signature scheme.

2.6.27 Sanitization key

A secret information used by the sanitizer to produce sanitized signatures within a sani-
tizable signature scheme.

15 of 100

Prismacloud Deliverable D5.9

2.6.28 Issuing Key

A secret information that is used to issue membership certificates for group membership
of users.

2.6.29 Opening Key

A secret information that is used by the opener to identify the producer of a group signa-
tures (selective disclosure token).

2.6.30 Linking Key

A secret information that is used by the linker to decide whether two group signatures
(selective disclosure tokens) have been produced by the same anonymous user or not.

2.6.31 Controllable Linkability

A property of a group signature scheme that introduces an additional party (the linker)
that when given a linking key can decide whether group signatures (selective disclosure
tokens) have been produced by the same anonymous user.

2.7 Malleable Signatures Library

Now, we are going to present the malleable signatures library. Therefore, we start with
an abstract description of the high level cryptographic building blocks and then proceed
with describing the architecture of the library in detail.

2.7.1 Abstract Description

Redactable Signatures. A redactable signature scheme (RSS) allows any party to re-
move parts of a signed message M (according to some policy specified during signing)
using a so called redaction algorithm. This redaction algorithm outputs an updated sig-
nature for the modified message which still verifies under the original signer’s public key
pk. The important point is that this can be done without the signers’ secret key sk.

In the following, we present the abstract description of redactable signatures as given in
[DPSS15].

Before presenting the algorithmic interface, we need to introduce some notation. We
assume that a message M is some arbitrarily structured piece of data, ADM is an abstract
data structure which describes the admissible redactions and may contain descriptions
of dependencies, fixed elements or relations between elements. MOD is used to actually
describe how a message M is redacted. Next, we define how ADM, MOD and the message

16 of 100

Prismacloud Deliverable D5.9

M are tangled, for which we introduce the following notation: MOD �
ADM

M means that
MOD is a valid redaction description with respect to ADM and M . ADM � M denotes
that ADM matches M , i.e., ADM is valid with respect to M . By M ′ ←−MOD M , we denote
the derivation of M ′ from M with respect to MOD. Clearly, how MOD, ADM, �

ADM
, ←−MOD

and � are implemented depends on the data structure in question and on the features
of the concrete RSS. Let us give a simple example for sets without using dependencies
or other advanced features: then, MOD and ADM, as well as M , are sets. A redaction
M ′ ←−MOD M simply would be M ′ ← M \MOD. This further means that MOD �

ADM
M holds

if MOD ⊆ ADM ⊆ M , while ADM � M holds if ADM ⊆ M . We want to stress that the
definitions of these operators also define how a redaction is actually performed, e.g., if a
redacted block leaves a visible special symbol ⊥ or not.

Now, we are ready to present an algorithmic description of RSS.

Definition 2.1. An RSS is a tuple of four efficient algorithms (KeyGen,Sign,Verify,Redact),
which are defined as follows:

KeyGen(1λ) : On input of a security parameter λ, this probabilistic algorithm outputs a
keypair (sk, pk).

Sign(sk,M,ADM) : On input of a secret key sk, a message M and ADM, this (probabilis-
tic) algorithm outputs a message-signature pair (M,σ) together with some auxiliary
redaction information red.1

Verify(pk, σ,M) : On input of a public key pk, a signature σ and a message M , this de-
terministic algorithm outputs a bit b ∈ {0, 1}.

Redact(pk, σ,M,MOD, red) : This (probabilistic) algorithm takes a public key pk, a valid
signature σ for a message M , modification instructions MOD and auxiliary redaction
information red as input. It returns a redacted message-signature pair (M ′, σ′) and
an updated auxiliary redaction information red′.2

We also require that Sign returns ⊥, if ADM � M , while Redact also returns ⊥, if
MOD �

ADM
M . Note that red can also be ∅ if no auxiliary redaction information is required.

Moreover, other schemes may add additional algorithms. As an example take the up-
datable and mergeable redactable signature scheme from [PS14]. This scheme got imple-
mented for Prismacloud as an Java crypto provider to extend FLEXAUTH, see Pris-
macloud Deliverable D6.5 for further details. Note, contrary to the above scheme it only
protects sets not lists, i.e., M becomes a set S. Of course this means that the scheme
can not protect the order of elements nor the cardinality of duplicates. Further note, the
scheme tracks and identifies each individual signed message via a tag τ . For brevity we
only give the scheme’s additional algorithms and defer the interested reader to the original
publication [PS14]. They are named Update and Merge and got defined as follows:

1We assume that ADM can always be correctly and unambiguously derived from any valid message-
signature pair. Also note that ADM may change after a redaction.

2Note that this algorithm may either explicitly or implicitly alter ADM in an unambiguous way.

17 of 100

Prismacloud Deliverable D5.9

Definition 2.2. The mergeable and updatable UMRS from [PS14] consists of six efficient
algorithms. Let UMRS := (KeyGen, Sign,Verify,Redact,Update,Merge). In the following
we only re-produce Update and Merge for brevity.

Update : The algorithm Update takes as input a verifying set/signature/tag tuple (S, σ, τ),
the secret key sk and a second set U . It outputs (S ′, σ′, τ), where S ′ = S ∪U , and σ′

is a verifying signature on S ′. On error, the algorithm outputs ⊥
Merge : The algorithm Merge takes as input the public key pk of the signer, two sets S and

V, a tag τ , and the corresponding signatures σS and σV . We require that σS and
σV are valid on S and V. It outputs the merged set/signature/tag tuple (U , σU , τ),
where U = S ∪ V and σU is valid on U . On error, the algorithm outputs ⊥

Sanitizable Signatures. Sanitizable signatures allow to issue a signature on a mes-
sage where certain predefined message blocks may later be changed (sanitized) by some
dedicated party (the sanitizer) who is identified by a public key. A signature updated
by the sanitizer by means of the so called sanitizing algorithm (which requires the secret
key of the sanitizer) does not invalidate the original signature of the signer as long as the
modification are allowed (admissible). With sanitizable signatures, replacements for mod-
ifiable (admissible) message blocks can be chosen arbitrarily by the sanitizer. However, in
various scenarios this makes sanitizers too powerful. To reduce the sanitizers power, one
can rely on so called extended sanitizable signatures, where the most important extension
(which we include subsequently) enables the signer to limit the allowed modifications per
admissible block to a well defined set each.

In the following, we present an abstract description of extended sanitizable signature
schemes ESSS, which cover sanitizable signatures as a special case, i.e., when omitting
the extensions regarding LimitSet and ADM, it is equivalent to sanitizable signatures as
presented in [BFF+], which is generally considered as the standard model for sanitizable
signature schemes. Our description is as given in [DS15].

Definition 2.3 (Message). A message m = (mi)
n
i=1 is a sequence of n bitstrings (message

blocks).

Henceforth, we use `i to refer to the (maximum) length of message block mi and assume
an encoding that allows to derive (`i)

n
i=1 from m.

Definition 2.4 (Admissible Modifications). Admissible modifications ADM with respect
to a message m = (mi)

n
i=1 are represented as a sequence ADM = (Bi)

n
i=1, with Bi ∈

{fix, var, lim}.

Here Bi = fix indicates that no changes are allowed, Bi = var indicates that arbitrary
replacements are allowed, and Bi = lim indicates that the replacements are limited to a
predefined set (LimitSet).

Definition 2.5 (Set Limitations). Set limitations V with respect to a message m = (mi)
n
i=1

and admissible modifications ADM = (Bi)
n
i=1 are represented by a set V = {(i,Mi) : Bi =

lim ∧ Mi ⊂
⋃`i
j=0{0, 1}j}.

18 of 100

Prismacloud Deliverable D5.9

We use m′ �
ADM

m to denote that m′ can be derived from m under ADM and V.

Definition 2.6 (Witnesses). Witnesses W = {(i,Wi)}ti=1, with Wi = {(mi1 , witi1),
. . . , (mik ,witik)}, are derived from set limitations V = {(i,Mi)}ti=1, with Mi = {mi1 ,
. . . ,mik}. Thereby, witij attests that its corresponding message block mij is contained in
the set Mi.

With V ←−MOD W, we denote the extraction of the set of witnesses V corresponding to a
message m from the set W.

Definition 2.7 (Modification Instructions). Modification instructions MOD, with respect
to a message m = (mi)

n
i=1, admissible modifications ADM and set limitations V are rep-

resented by a set MOD = {(i,m′i)}ti=1 with t ≤ n, where i refers to the position of the
message block in m, and m′i is the new content for message block mi.

With MOD � (ADM,V), we denote that the modification instructions in MOD are compat-
ible with ADM and V. Furthermore, with (m0,MOD0,ADM,V) ≡ (m1,MOD1,ADM,V),
we denote that after applying the changes in MOD0 and MOD1 to m0 and m1 respectively,
the resulting messages m′0 and m′1 are identical.

Definition 2.8. An ESSS is a tuple of PPT algorithms (KeyGensig,KeyGensan, Sign, Sanit,
Verify,Proof, Judge) which are defined as follows:

KeyGensig(1κ): This algorithm takes as input a security parameter κ and outputs a keypair
(sksig, pksig) for the signer.

KeyGensan(1κ): This algorithm takes as input a security parameter κ and outputs a keypair
(sksan, pksan) for the sanitizer.

Sign(m,ADM, V, (sksig, pksig), pksan): This algorithm takes as input a message m, corre-
sponding admissible modifications ADM and set limitations V, as well as the keypair
(sksig, pksig) of the signer and the verification key pksan of the sanitizer. It computes
the set W from V, obtains V ←−MOD W and outputs a signature σ = (σ̂,V) together with
some auxiliary sanitization information san = (aux,W).3 In case of an error, ⊥ is
returned. As in [BFF+], we assume that ADM can be recovered from a signature σ.

Sanit((m, σ),MOD, san, pksig, sksan): This algorithm takes as input a valid message-signature
pair (m, σ), modification instructions MOD, some auxiliary sanitization information
san and the verification key pksig of the signer and the signing key sksan of the san-
itizer. It modifies m and σ according to MOD and outputs an updated message-
signature pair (m′, σ′) and ⊥ if m′ �

ADM
m. We assume that V can be reconstructed

from san.

Verify((m, σ), pksig, pksan): This algorithm takes as input a message-signature pair (m, σ)
and the public verification keys of the signer pksig and the sanitizer pksan. It returns
true if σ is a valid signature on m under pksig and pksan, and false otherwise.

3While san is not required for plain sanitizable signature schemes, ESSS additionally return san to pass
auxiliary information, which is only relevant for the sanitizer.

19 of 100

Prismacloud Deliverable D5.9

Proof((m, σ), {(mj , σj)}qj=1, (sk, pk)sig, pksan): This algorithm takes as input a message-
signature pair (m, σ), q message-signature pairs {(mj , σj)}qj=1 created by the signer,
the keypair (sksig, pksig) of the signer and the public key pksan of the sanitizer and
outputs a proof π.

Judge((m, σ), pksig, pksan, π): This algorithm takes as input a message-signature pair (m, σ),
the verification keys of the signer pksig and the sanitizer pksan and a proof π. It out-
puts a decision d ∈ {sig, san}, indicating whether the signature has been produced
by the signer or the sanitizer.

2.7.2 Architecture and Design of the Library

In this section, we map the abstract description given above to a concrete architecture in
terms of components, and also provide more detailed insights in terms of class diagrams
of the single components. Our library is split into four components which we will discuss
subsequently.

MSS Provider. The MSS provider can be registered as a Java cryptographic provider.
It uses the Java cryptography architecture (JCA) to provide an easy and interoperable way
to generate certain parameters required by other components within our library and/or
by external components. Currently, the MSS provider provides a KeyPairGenerator im-
plementation to generate t-SDH instances as required by our accumulator implementation
(see below). Due to the modularity which is inherited from the Java cryptography provider
an easy extension is possible at a later point in time. Since this component only implements
interfaces from the JCA, we omit a detailed description and present a design overview in
Figure 4.

Figure 4: MSS Provider Class Diagram

20 of 100

Prismacloud Deliverable D5.9

Signature Engine. To abstract away the way how the malleable signature implemen-
tations generate the required standard digital signatures, we introduced another layer for
the signature generation (cf. Figure 5). Essentially, the idea is to introduce a proxy
IDSSProxy which provides means to obtain signing keypairs and to generate and verify
signatures. Currently we provide means to generate signatures using the JCA. In particu-
lar, our implementations currently allow to create RSA and ECDSA signatures. At a later
point in time, one can simply implement this interface to forward the calls to signature
generation hardware as, e.g., developed within WP6.

Figure 5: Signature Engine Class Diagram

Accumulator Framework. One essential building block of both redactable and ex-
tended sanitizable signatures are cryptographic accumulators. To this end, one compo-
nent is dedicated to provide an easily extensible framework for accumulators. As a starting
point for our implementation, we used the recent unification of cryptographic accumula-
tors [DHS], which is also used as a building block in both the generic redactable signature
framework [DPSS15] and the extended sanitizable signature framework [DS15] we are
aiming to implement. Building upon this unified framework allows to easily exchange the
concrete accumulator scheme used in implementations, i.e., one simply needs to implement
the IStatelessAccumulator interface which resembles the abstract model from [DHS].
The factory method IStatelessAccumulator.constructAccumulatorByClassName is a
generic factory method, which allows to obtain new instantiations of such implementa-
tions by simply providing the full-qualified class name.4 The IStatelessAccumulator

interface is wrapped by the class IStatefulAccumulator which—if required—takes care
of maintaining a state. Currently we provide an implementation of the indistinguishable
t-SDH accumulator from [ACN13, DHS].

Redactable Signature Framework. The redactable signature framework follows a
similar design rationale as the accumulator framework and provides a GenericRSS class
which closely follows the interface definition from [DPSS15] as presented above. The
factory method GenericRSS.constructRSS allows to obtain an instantiation of a con-
crete GenericRSS implementation by its full-qualified class name, the full-qualified class

4Note that this design strategy resembles the design strategy of the JCA.

21 of 100

Prismacloud Deliverable D5.9

Figure 6: Accumulator Framework

name of the IDSSProxy implementation, as well as the full-qualified class name of the
IStatelessAccumulator implementation. This design facilitates extreme flexibility with
respect to the used underlying building blocks and signing mechanisms, i.e., one can simply
exchange the whole accumulator or conventional signing procedure by simply modifying
the class name passed to the factory method. Currently, we provide an implementation

Figure 7: Redactable Signature Framework Class Diagram

of a generic redactable signature scheme for linear documents, i.e., documents which can
be represented as a sequence of message blocks. While this is a format which will directly
be suited for many applications including the use cases required within Prismacloud,
we stress that one can simply extend the Message class to implement the support for
custom formats. Note that the scope of this document is the architecture of the FLEX-
AUTH tool; further details on the concrete implementation were already provided in a
preliminary version in Deliverable D6.5 and the final version will be provided in D6.6 in
M30.

22 of 100

Prismacloud Deliverable D5.9

Extended Sanitizable Signature Framework. Currently, (extended) sanitizable sig-
natures are not required within the scope of Prismacloud. Yet, we believe that it is
important to have a design which facilitates future developments and potential additional
requirements which may arise over time. To this end we also evaluated the compatibil-
ity of our design with extended sanitizable signatures. Subsequently, we briefly sketch
how extended sanitizable signatures would be integrated. Essentially we can use a design
analogous to the redactable signature component, but tailored to the extended sanitizable
signature interface [DS15]. In addition, sanitizable signatures [BFF+09] underlying the
extension from [DS15] rely on chameleon hashes [BFF+09]. Thus we would require one
additional component implementing chameleon hashes, where the design is in the same
fashion as our accumulator component.

2.8 Group Signatures Library

Subsequently, we present the group signatures library. As with the former library, we
start with an abstract description of the high level cryptographic building blocks and then
proceed with describing the architecture of the library in detail.

2.8.1 Abstract Description

Group Signatures with Controllable Linkability. Group signatures allow users to
join some group (by getting a signed membership certificate) and then to anonymously
authenticate as a member of the group. Together with this authentication, a user can
sign/authenticate any messages on behalf of a group (produce a so called group signa-
ture). In case of dispute, a so-called opening authority is able to reveal the identity of an
anonymous user. Controllable linkability is a rather recent feature of group signatures.
Here, a dedicated entity called linking authority (LA) can determine whether two given
group signatures stem from the same user, but the LA is not able to identify the user(s).

Subsequently, we define the algorithms constituting a group signature scheme with con-
trollable linkability (CL-GS), where we follow the presentation in [SSU14, BDSS16].

Definition 2.9. A CL-GS is a tuple of efficient algorithms GS = (GkGen, UkGen, Join,
Issue, GSig, GVf, Open, Judge, Link), which are defined as follows.

GkGen(1λ) : On input a security parameter λ, this algorithm generates and outputs a tuple
(gpk, mok, mik, mlk), representing the group public key, the master opening key, the
master issuing key, and the master linking key.

UkGen(1λ) : On input a security parameter λ, this algorithm generates a user key pair
(uski, upki).

Join(uski, upki) : On input the user’s key pair (uski, upki), this algorithm interacts with
Issue and outputs the group signing key gski of user i.

23 of 100

Prismacloud Deliverable D5.9

Issue(gpk,mik, reg) : On input of the group public key gpk, and the master issuing key mik
and the registration table reg, this algorithm interacts with Join to add user i to the
group.

GSig(gpk,M, gski) : On input of the group public key gpk, a message M , and a user’s
secret key gski, this algorithm outputs a group signature σ.

GVf(gpk,M, σ) : On input of the group public key gpk, a message M , and a signature σ,
this algorithm verifies whether σ is valid with respect to M and gpk. If so, it outputs
1 and 0 otherwise.

Open(gpk, reg,M, σ,mok) : On input of the group public key gpk, the registration table reg,
a message M , a valid signature σ, and the master opening key mok, this algorithm
returns the signer i together with a publicly verifiable proof τ attesting the validity
of the claim. If no group member produced σ, ⊥ is returned.

Judge(gpk,M, σ, i, upki, τ) : On input of the group public key gpk, a message M , a valid
signature σ, the claimed signer i, the public key upki as well as a proof τ , this
algorithm returns 1 if τ is a valid proof that i produced σ and 0 otherwise.

Link(gpk,M, σ,M ′, σ′,mlk) : On input of the group public key gpk, a message M , a cor-
responding valid signature σ, a message M ′, a corresponding valid signature σ′ and
the master linking key mlk, this algorithm determines whether σ and σ′ have been
produced by the same or different signers and returns the linking decision b ∈ {1, 0}.

2.8.2 Architecture and Design of the Library

Again, we deem it to be most reasonable to align our interfaces with existing models of
group signatures from the literature which are broadly accepted and widely used. The
model for controllably linkable group signatures given above, extends the most common
model for dynamic group signatures from Bellare et al. [BSZ05], and, therefore, seems to
be a good choice. As in the previous section, our IGroupSignature interface provides
a factory method to obtain instance of IGroupSignature implementations via their full-
qualified class name. The remaining methods basically resemble the interface methods as
given in the abstract description above, or some helper methods which are required to
construct instances of certain helper objects with respect to some parameters. Given the
abstract interface description above, all methods are fairly self-explanatory and therefore
not detailed. Besides, that group signatures also require the group manager to maintain
a so-called registration table. We abstracted this table via a IRegistrationTable inter-
face with associated factory method. This way our library is compatible with arbitrary
registration table implementations, e.g., such an implementation could serve as a gateway
to some registration table which is operated as a cloud service.

We currently provide implementations of two group signature schemes. First, we have im-
plemented a group signature scheme which is due to Delerablée and Pointcheval [DP06].
Second, we have implemented the currently most efficient group signature scheme [DS16].
The latter scheme was developed within the context of Prismacloud and is especially

24 of 100

Prismacloud Deliverable D5.9

Figure 8: Group Signature Class Diagram

well-suited for the Prismacloud use cases due to its efficiency. Note that the scope of
this document is the architecture of the FLEXAUTH tool; further details on the imple-
mentation will be presented within D6.6 in M30.

Due to our modular architecture, one can use both signature schemes using the same code
by simply exchanging the full qualified class name within the factory method. This makes
it especially easy to switch between multiple group signature schemes, depending on the
requirements of the specific use case where our tool is used.

2.9 Recommendations

Finally, we provide some recommendations on how to securely use the libraries. As seen
above, both our libraries are constructed very generically and, apart from the concrete
instantiations of primitives, can be easily extended by implementing additional primitives
that fit into the frameworks. It is, however, important that the parameters are chosen in
a way that the expected security from the primitives is guaranteed.

Choice of Key Sizes. For the ease of use our libraries are designed in a way that
all cryptographic primitives can be instantiated by only providing a security parameter,
which corresponds to the bit-strength of a symmetric cipher. This is a common way to
compare the security of different primitives based on different cryptographic assumptions.

25 of 100

Prismacloud Deliverable D5.9

We, thereby, follow the NIST recommendations5, which we present in Figure 9 for the
convenience of the reader.

Figure 9: NIST key length recommendations taken from https://www.keylength.com/

en/4/.

For the parametrizations of the pairing-based primitives we have to consider suitable
choices of pairing-friendly elliptic curve families for a deployment in practice. When
choosing a suitable paring-friendly curve family, the recent advances for computing discrete
logarithms in finite extension fields [KB16] applying to the target group GT of state of
the art pairing-friendly elliptic curve groups has to be taken into consideration. In this
context, a recently released assessment of the impact of theses advances by Menezes et
al. [MSS16] states 384 bit curves as a conservative estimate for BN curves [BN05]. In
contrast, for BLS12 curves [BLS02] following Menezes et al. the advances have no impact
at the current recommendations being 384 bit. However, recent work by Barbulescu et
al. [BD17] raises the recommended bit lengths of the prime fields for the 128 bit security
level to 461 bits for both BN and BLS12 curves.

5https://www.keylength.com/en/4/

26 of 100

https://www.keylength.com/en/4/
https://www.keylength.com/en/4/
https://www.keylength.com/en/4/

Prismacloud Deliverable D5.9

3 The FLEXAUTH Tool in the Application Context

In this section, we first briefly set our architecture in the context of the pilot applications
within Prismacloud. Then we present our research on additional applications and also
discuss how those applications would comply with the architecture of our framework.

3.1 The eHealth Pilot

Very roughly, in the eHealth use case, a hospital stores digital patient records within a
cloud platform so that users can further distribute selected parts of their documents to
further entities, e.g., to produce sick notes for employers or for further treatment by the
family doctor. We aim to use the FLEXAUTH tool within this use case to allow doctors
in the hospital to sign the patient records using an RSS. This way, one can remove certain
document parts while still maintaining end-to-end authenticity and source authentication.
Practically speaking, in our example from before the employer or the family doctor can
then still be sure that they are indeed presented an authentic portion of the health record
which was actually signed by a doctor in the hospital.

While further details on the implementation are provided within D7.8, we stress one
important point in the design of our library which facilitates an easy integration within
the hospital’s existing infrastructure. That is, we provide an interface which abstracts the
signature generation as well as the provisioning of the key material. As detailed in D7.8
this allows us an easy integration within the identity provisioning and signing framework
provided by the partner XiTrust.

3.2 The Smart City Pilot

The Smart City pilot builds upon the results of the SIMON project6, and, in particular,
aims to address privacy and security issues identified within the SIMON project and in
particular the disabled parking use-case. The functionality of the FLEXAUTH tool is
thereby used to increase users’ privacy. From a very high-level, users obtain group signing
keys upon registration which enables them to issue signatures for a certain period (say
a month). To park at a certain parking spot, they deposit a group signature on some
message, so that the ticket inspector can verify whether they are actually from the group
of authorized entities.7 To detect “double-spending”, i.e., find entities who use their
signing key to park on two distinct parking spots, we use the linking feature of group
signatures.

Using the defined interface, the integration of the FLEXAUTH tool within the use case is
almost straight-forward. Also note that our flexible design allows to easily switch between
different concrete implementations of group signature schemes.

6http://simon-project.eu
7Note that we employ some additional measures to prevent replay attacks which are omitted here for

brevity. Refer to D7.8 for the details.

27 of 100

http://simon-project.eu

Prismacloud Deliverable D5.9

3.3 Research on Additional Applications

3.3.1 Cryptographically Enforced Four-Eyes Principle

In [BHPS16], we have shown that sanitizable signatures can be used to implement a well-
known access control and authorisation concept: The 4-eyes principle (4EP). It is used
in many workflows to minimise the likelihood of corruption. It states that at least two
separate entities must approve a message before it is considered authentic. Hence, an
adversarial party aiming to forge bogus content is forced to convince other parties to
collude in the attack. In the aforementioned paper, we present a formal framework along
with a suitable security model. Namely, a party sets a policy for a given message which
involves multiple additional approvers in order to authenticate the message. Based on this,
we show how such a signature can be black-box realised by secure sanitizable signature
schemes and thus make the FLEXAUTH tool usable in such application scenarios.

For convenience of the reader, we have included a copy of [BHPS16] in the Appendix.

From an implementation point of view, we want to remark that the architecture of the
FLEXAUTH tool is designed with extensibility in mind. In particular, as sketched in Sec-
tion 2.7.2 it is easily possible to add support for (extended) sanitizable signature schemes.

3.3.2 Accountable and Privacy Preserving Workflows

In [DHPS15], we discuss applications of malleable signatures in the context of accountable
and privacy preserving documentation of outsourced workflows. In particular, envision
a business process where certain sub-tasks are outsourced to some tenant in the cloud.
To efficiently manage those processes, to immediately detect deviations from the intended
workflows and to hold tenants (such as the cloud provider) accountable in such (decen-
tralised) processes, a mechanism for efficient and accountable monitoring and documenta-
tion is highly desirable. Ideally, these features are provided by means of cryptography in
contrast to organisational measures. A first idea to hold the tenant accountable for its ac-
tions, would be to require the tenant to digitally sign a report documenting the performed
operations. We however, observe that using variants of malleable signatures has benefits
in these applications as it allows to increase the expressiveness of such reports in that it
allows to predefine the structure of the reports and potentially even certain restrictions
on the actions the tenant is allowed to perform. We demonstrate the usefulness of certain
variants of malleable signature schemes, as well as proxy (functional) signature schemes,
i.e., signature schemes which allow the delegation of signing rights to other parties, in this
context.

For convenience of the reader, we have included a copy of [DHPS15] in the Appendix.

As above, we observe that the architecture of the FLEXAUTH tool is compatible with all
those variants of signature schemes.

28 of 100

Prismacloud Deliverable D5.9

3.4 Extending Redactable Signatures with Additional Privacy Features

In [DKS16], we further extend redactable signatures with additional privacy features. In
particular, we observe that there are scenarios where the identity of the signer already
leaks privacy sensitive information. In addition, we observe that anyone who is in pos-
session of a valid signature on a (redacted) document can hand it on to other parties
to convince them of the authenticity of the data. However, it would be more privacy
friendly to have (redactable) signatures which only convince a designated verifier of the
authenticity of the associated document (as it is known from universal designated verifier
signatures [SBWP03]). We extend the security model of redactable signatures in these
directions and also present two provably secure constructions in the extended model.

For convenience of the reader, we have included a copy of [DKS16] in the Appendix.

From the practical viewpoint, our FLEXAUTH architecture would allow for an easy (and
even generic) integration of the group signing feature by using the abstraction layer we
introduced for the generation of digital signatures in our generic RSS interface. For the
designated verifier feature, one would additionally require the implementation of the re-
quired zero-knowledge proofs of knowledge, which however is rather straight-forward.

29 of 100

Prismacloud Deliverable D5.9

4 Conclusion

In this deliverable we have presented our final design for the FLEXAUTH tool. We have
established a flexible design with an easy to use API which is compatible with all the
requirements imposed by the Prismacloud pilots. While the design itself represents
a final iteration of the design already presented in D5.6, we have presented additional
research on applications going beyond the use cases within the Prismacloud pilots, and
assessed the possibilities of an integration of the primitives required by those extended
application scenarios.

30 of 100

Prismacloud Deliverable D5.9

List of Acronyms

t-SDH t Strong Diffie Hellman
4EP Four-Eyes Principle
API Application Programming Interface
BFT Byzantine Fault Tolerance
CCTV Closed-Circuit Television
CL-GS Group Signature Scheme with Controllable Linkability
CryptSDLC Cryptographic Service Development LiveCycle
CSS Computational Secret Sharing
DSA Digital Signature Algorithm
ECDSA Elliptic Curve Digital Signature Algorithm
EUF-CMA Existential Unforgeability under adaptively Chosen Message Attacks
FPE Format Preserving Encryption
GSS Group Signature Scheme
GS Group Signature
JCA Java Cryptography Architecture
JCE Java Cryptography Extensions
JCPF Java Crypto Provider Framework
JSON JavaScript Object Notation
LA Linking Authority
MSS Malleable Signature Scheme
OPE Order Preserving Encryption
PSS Proactive Secret Sharing
RSA-FDH RSA Full Domain Hash
RSA-PSS RSA Probabilistic Signature Scheme
RSS Redactable Signature Scheme
VDP Verifiable Data Processing
XML eXtensible Markup Language

List of Figures

1 Prismacloud architecture. 7

2 Library components of the FLEXAUTH tool. 10

3 Abstract components of the FLEXAUTH tool. 10

4 MSS Provider Class Diagram . 20

5 Signature Engine Class Diagram . 21

6 Accumulator Framework . 22

7 Redactable Signature Framework Class Diagram 22

8 Group Signature Class Diagram . 25

31 of 100

Prismacloud Deliverable D5.9

9 NIST key length recommendations taken from https://www.keylength.

com/en/4/. 26

32 of 100

https://www.keylength.com/en/4/
https://www.keylength.com/en/4/

Prismacloud Deliverable D5.9

References

[ACN13] Tolga Acar, Sherman S. M. Chow, and Lan Nguyen. Accumulators and U-
Prove Revocation. In Financial Cryptography, LNCS. 2013.

[BD17] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for
pairings. IACR Cryptology ePrint Archive, 2017:334, 2017.

[BDSS16] Olivier Blazy, David Derler, Daniel Slamanig, and Raphael Spreitzer. Non-
Interactive Plaintext (In-)Equality Proofs and Group Signatures with Verifi-
able Controllable Linkability. In Topics in Cryptology – CT-RSA 2016, pages
127–143, 2016.

[BFF+] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Mar-
cus Page, Jakob Schelbert, Dominique Schröder, and Florian Volk. Security of
sanitizable signatures revisited. In PKC 2009, volume 5443 of LNCS.

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Mar-
cus Page, Jakob Schelbert, Dominique Schröder, and Florian Volk. Security of
sanitizable signatures revisited. In PKC, 2009.

[BHPS16] Arne Bilzhause, Manuel Huber, Henrich C. Pöhls, and Kai Samelin. Crypto-
graphically enforced four-eyes principle. In 11th International Conference on
Availability, Reliability and Security, ARES 2016, Salzburg, Austria, August
31 - September 2, 2016, pages 760–767, 2016.

[BLS02] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing ellip-
tic curves with prescribed embedding degrees. In Security in Communication
Networks, Third International Conference, SCN 2002, Amalfi, Italy, Septem-
ber 11-13, 2002. Revised Papers, pages 257–267, 2002.

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves
of prime order. In Selected Areas in Cryptography, 12th International Work-
shop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005, Revised Selected
Papers, pages 319–331, 2005.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of Group Signatures:
The Case of Dynamic Groups. In CT-RSA, volume 3376 of LNCS, pages 136–
153. Springer, 2005.

[DHPS15] David Derler, Christian Hanser, Henrich C. Pöhls, and Daniel Slamanig. To-
wards authenticity and privacy preserving accountable workflows. In Privacy
and Identity Management. Time for a Revolution? - 10th IFIP WG 9.2, 9.5,
9.6/11.7, 11.4, 11.6/SIG 9.2.2 International Summer School, Edinburgh, UK,
August 16-21, 2015, Revised Selected Papers, pages 170–186, 2015.

[DHS] David Derler, Christian Hanser, and Daniel Slamanig. Revisiting crypto-
graphic accumulators, additional properties and relations to other primitives.
In CT-RSA 2015, volume 9048 of LNCS.

33 of 100

Prismacloud Deliverable D5.9

[DKS16] David Derler, Stephan Krenn, and Daniel Slamanig. Signer-anonymous
designated-verifier redactable signatures for cloud-based data sharing. In Cryp-
tology and Network Security - 15th International Conference, CANS 2016, Mi-
lan, Italy, November 14-16, 2016, Proceedings, pages 211–227, 2016.

[DP06] Cécile Delerablée and David Pointcheval. Dynamic Fully Anonymous Short
Group Signatures. In Progress in Cryptology – VIETCRYPT 2006, pages 193–
210, 2006.

[DPSS15] D. Derler, H. C. Pöhls, K. Samelin, and D. Slamanig. A general framework
for redactable signatures and new constructions. In ICISC, pages 3–19, 2015.

[DS15] D. Derler and D. Slamanig. Rethinking privacy for extended sanitizable sig-
natures and a black-box construction of strongly private schemes. In ProvSec,
pages 455–474, 2015.

[DS16] David Derler and Daniel Slamanig. Fully-anonymous short dynamic group
signatures without encryption, 2016.

[KB16] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve:
A new complexity for the medium prime case. In Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, pages 543–571,
2016.

[MSS16] Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with assessing
the impact of NFS advances on the security of pairing-based cryptography.
IACR Cryptology ePrint Archive, 2016:1102, 2016.

[PS14] H. C. Pöhls and K. Samelin. On updatable redactable signatures. In ACNS,
volume 8479 of LNCS, pages 457–475. Springer, 2014.

[SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Universal
designated-verifier signatures. In ASIACRYPT, 2003.

[SSU14] Daniel Slamanig, Raphael Spreitzer, and Thomas Unterluggauer. Adding Con-
trollable Linkability to Pairing-Based Group Signatures for Free. In ISC, vol-
ume 8783 of LNCS, pages 388–400. Springer, 2014.

34 of 100

Prismacloud Deliverable D5.9

A Appendix

In the following we have attached the publications that relate to Section 3 of this deliver-
able.

35 of 100

Cryptographically Enforced Four-Eyes Principle
Arne Bilzhause

Chair of IT-Security & Institute of IT-Security and Security Law (ISL),
University of Passau, Passau, Germany

ab@sec.uni-passau.de

Manuel Huber
Fraunhofer Research Institute AISEC, Munich, Germany

manuel.huber@aisec.fraunhofer.de

Henrich C. Pöhls
Chair of IT-Security & Institute of IT-Security and Security Law (ISL),

University of Passau, Passau, Germany
hp@sec.uni-passau.de

Kai Samelin
IBM Research – Zurich,Rüschlikon, Switzerland &

TU Darmstadt, Darmstadt, Germany
ksa@zurich.ibm.com

Abstract

The 4-eyes principle (4EP) is a well-known access control and au-
thorization principle, and used in many scenarios to minimize the like-
lihood of corruption. It states that at least two separate entities must
approve a message before it is considered authentic. Hence, an adver-
sarial party aiming to forge bogus content is forced to convince other
parties to collude in the attack. We present a formal framework along
with a suitable security model. Namely, a party sets a policy for a
given message which involves multiple additional approvers in order to
authenticate the message. Finally, we show how these signatures are
black-box realized by secure sanitizable signature schemes.

1 Introduction
Involving more than one party in important decisions or transactions is one
way of fighting corruption or just making sure that accidental errors do not
get overlooked. Using cryptography this can be expressed by requiring more
than one valid digital signature on a message m, such that a verifier is as-
sured that several distinct entities agreed on the same message. Only if all
signatures verify at the same time, the message is considered valid. Let us

Prismacloud Deliverable D5.9

36 of 100

make an example; the signed message m is a PhD diploma issued by the
faculty, and a valid diploma requires two professors as approvers. Hence,
the diploma is only considered genuine, if two professors appointed by the
dean of the faculty also approve it, i.e., have also signed it. Only if all
signatures verify under the given (trusted) public keys, the diploma is con-
sidered genuine, meaning that each of the two professors agreed to graduate
the student, and the faculty authorized them as approvers. Thus, neither
a single professor, nor the dean of the faculty, has sufficient permissions to
graduate the student in question on its own, which would require to corrupt
the dean of the faculty and the two professors. Generally speaking, this is
widely known as the four-eyes principle (4EP). We focus on the case where
the policy requires two additional approvers. We choose this definition of
the 4EP, as the messages to be approved may come from any source. In the
given example, this could be a university server compiling the data of the
PhD candidate in an automated fashion from several databases located in a
partially untrusted cloud. In this scenario, the 4EP requires two additional
entities to be meaningful. Clearly, this extends to other protocols where
data is processed automatically, but still needs to be approved. Another
example clarifying this statement is the external production of a payroll,
where an external server located in the cloud prepares the checks, while two
employees from human resources need to approve the calculations locally
before they become valid and the bank would allow them to be cashed-in.

An alteration of our construction, and framework, to the “standard”
4EP with one approver is straightforward. Extensions to more than two
approvers follow a simple pattern.

We show how sanitizable signature schemes (SSS) [3] can be used in
this scenario. In a nutshell, SSSs allow to alter all signer-chosen admis-
sible blocks m[i] of a given message m = (m[1],m[2], . . . ,m[i], . . . ,m[`])
to different bitstrings m[i]′ ∈ {0, 1}∗, where i ∈ {1, 2, . . . , `}, by a semi-
trusted party named the sanitizer. This party holds its own private and
public key. Thus, sanitization of a message m results in an altered mes-
sage m′ = (m[1]′,m[2]′, . . . ,m[i]′, . . . ,m[`]′), where m[i] = m[i]′ for every
non-admissible block, and also a signature σ′, which verifies under the given
public keys. We use this primitive to cryptographically enforce the 4EP.
Our construction paradigm has the benefit that there is no need to agree
on a set of participating parties beforehand, i.e., the entities do not need
to know each other a-priori. Thus, all entities can generate their key pair
in advance, without requiring to know which entity the other approver, or
the entity generating the message, is. Moreover, our construction is com-
pletely non-interactive, meaning that neither for signing, nor for approving
nor for verifying any interaction between parties is necessary. We also do
not require that the message m is “tainted” with meta-information, i.e., the
signature σ itself carries enough information to derive which parties are re-
quired to approve the message m in question, and also which party chose

Prismacloud Deliverable D5.9

37 of 100

the policy, and m. This is in particular useful for entities only allowed to
approve messages, but not to generate messages to be approved, and vice
versa. This principle separates concerns and means that professors are only
allowed to approve a diploma, while only the dean of the faculty is allowed
to generate diplomas, in our example.

1.1 Our Contribution
We introduce a formal framework that enforces the 4EP. This framework is
accompanied by cryptographic security definitions, which capture the main
idea of the 4EP. We then show how one can use the well-studied primitive of
SSSs in this context. Namely, SSSs are enough to realize “4EP-signatures”.
We identify the necessary properties of SSSs, and present a provably secure
construction meeting our requirements, black-box realized by any secure
SSS. The reductions are tight, i.e., we only have a constant reduction loss,
regardless of the security parameter length. Moreover, our construction
paradigm has the advantage that the parties are not required to encode
the approvers into the message m, which therefore also helps to separate
concerns. In addition, we show how to extend this paradigm to more than
two approving parties, and threshold schemes. Thus, we open new directions
where SSSs perfectly fit in.

Note that our goal is not to exchange signatures between parties [2, 4],
but to enforce entities to agree upon the same message m. In other words,
not all entities are required to receive the approved signature σ, but only
the final one. This allows to use less complex schemes.

1.2 State-of-the-Art
On the one hand, there exists work which can be used in our scenario as well.
This includes multi-signatures [5, 6], aggregate signatures [7], threshold sig-
natures [31], and proxy signatures [27]. However, all these primitives are
either very complex compared to SSSs (aggregate signatures, and multi sig-
natures), require some sort of interaction (proxy signatures), or the entities
need to know each other a-priori (threshold signatures), or a trusted third
party is involved. In our construction, the entity generating the message
can decide ad-hoc (on a per message basis) which entities need to approve a
given message. It also cannot forge signatures, i.e., if the appointed entities
do not approve the message m, a verifier does not consider the signature σ
valid.

On the other hand, SSSs have originally been introduced by Ateniese
et al. [3]. Brzuska et al. formalized most of the current security properties
in [8]. These have been later extended for unlinkability [10, 12], and non-
interactive public accountability [11, 12]. Some properties have then been
refined by Gong et al. [24]. Namely, they also consider the admissible blocks

Prismacloud Deliverable D5.9

38 of 100

in the security games. Recently, Krenn et al. further refined the security
properties to also account for the signatures, not only the message [26].
Several extensions such as limiting the sanitizer to signer-chosen values [13,
21, 25, 30], trapdoor SSSs (which allow to add new sanitizers after signature
generation by the signer) [15, 32], multi-sanitizer and -signer environments
for SSSs [9, 12, 14], and sanitization of signed and encrypted data [22] have
been considered. SSSs have also been used as a tool to make other related
primitives accountable [29], and to build other primitives, such as redactable
signatures schemes or credentials [16, 20, 18]. Also, SSSs and data-structures
more complex than lists have been considered [30]. Several implementations
of SSS presented in the literature prove that SSSs are sufficiently efficient
for use in practices [11, 12, 17, 28, 30]. Refer to references [1, 19, 23] for a
comprehensive overview of malleable signatures.

We stress that the SSSs we require can be built using standard unforge-
able digital signatures. For example, the construction given by Brzuska et
al. [11] is suitable for our needs. Thus, standard signatures are sufficient via
a trivial construction. Namely, one requires three signatures on the mes-
sage, one for the message generator, and one for each approver. Using SSSs,
however, has the benefit that the primitive itself already offers the required
interfaces, especially if existing implementations are re-used. Moreover, the
roles of the entities are clearly separated, while our construction also allows
for more efficient schemes, as two signatures are sufficient.

2 Preliminaries and Building Blocks
2.1 Notation
λ ∈ N denotes our security parameter. All algorithms implicitly take 1λ
as an additional input. We write a ← A(x) if a is assigned the output of
algorithm A with input x. For a message m = (m[1],m[2], . . . ,m[`]), where
m[i] ∈ {0, 1}∗, we call m[i] a block, while ` ∈ N denotes the number of
blocks in a message m. An algorithm is efficient if it runs in probabilistic
polynomial time (ppt) in the length of its input. The algorithms may return
a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception. For the remainder
of this paper, all algorithms are ppt if not explicitly mentioned otherwise.
If we have a list, we require that we have an injective encoding mapping
the list to {0, 1}∗. A message space M, and the randomness space R,
may implicitly depend on the corresponding public key(s). If not otherwise
stated, we assume that M = {0, 1}∗ ∪ ⊥ to reduce unhelpful boilerplate
notation, while R is implicit. A function ν : N → R≥0 is negligible, if it
vanishes faster than every inverse polynomial, i.e., for every k ∈ N there
exists an n0 ∈ N such that ν(n) ≤ n−k for all n > n0.

Prismacloud Deliverable D5.9

39 of 100

2.2 Sanitizable Signatures
The definitions are based on [8, 11, 12, 24, 26].

Definition 1 (Sanitizable Signature Schemes) A sanitizable signature
scheme SSS consists of seven ppt algorithms (KGensig,KGensan,Sign,Sanit,
Verify,Proof, Judge) such that:

1. Signer Key Generation: The signer key pair generation creates a key
pair for the signer; a private key and the corresponding public key,
based on λ: (pksig, sksig)← KGensig(1λ).

2. Sanitizer Key Generation: The sanitizer key pair generation also re-
turns a private key and the corresponding public key, based on λ, but
for the sanitizer: (pksan, sksan)← KGensan(1λ).

3. Signing: The Sign algorithm takes as input a message m, sksig, pksan,
as well as a description ADM of the admissible blocks. ADM con-
tains the set of indices of the modifiable blocks, as well as the num-
ber ` of blocks in m. We write ADM(m) = true, if ADM is valid
w.r.t. m, i.e., ADM contains the correct ` and all indices are in m.
If ADM(m) = false, this algorithm returns ⊥. For example, let
ADM = ({1, 2, 4}, 4). Then, m must contain four blocks, while all but
the third will be admissible. If we write mi ∈ ADM, we mean that mi

is admissible. It outputs a signature σ ← Sign(m, sksig, pksan,ADM).

4. Sanitizing: Algorithm Sanit takes a message m, modification instruc-
tion MOD, signature σ, pksig, and sksan. It modifies the message m
according to the modification instruction MOD, which is a set con-
taining pairs (i,m[i]′) for those blocks that shall be modified, meaning
that m[i] is replaced with m[i]′. Sanit calculates a new signature σ′ for
the modified message m′ ← MOD(m). It outputs m′ together with σ′:
(m′, σ′) ← Sanit(m,MOD, σ, pksig, sksan). We require that every party
can always correctly derive which parts of the message m are admissi-
ble from any valid signature σ. This is in accordance with [8, 24].

5. Verification: The Verify algorithm outputs a decision d ∈
{true, false}, verifying the signature σ for a message m w.r.t. the
public keys pksig and pksan: d← Verify(m,σ, pksig, pksan).

6. Proof: The Proof algorithm takes as input sksig, a message m, a signa-
ture σ, and a set of polynomially many additional message/signature
pairs {(mi, σi)} and pksan. It outputs a string π ∈ {0, 1}∗ which can
be used by the Judge to decide which party is accountable given a
message/signature pair (m,σ): π ← Proof(sksig,m, σ, {(mi, σi) | i ∈
N}, pksan).

Prismacloud Deliverable D5.9

40 of 100

7. Judge: Algorithm Judge takes as input a message m, a signature σ,
pksig, pksan, as well as a proof π. Note, this means that once a proof π
is generated, the accountable party can be derived by anyone for that
message/signature pair (m,σ). It outputs a decision d ∈ {Sig,San},
indicating whether the message/signature pair has been created by the
signer, or the sanitizer: d← Judge(m,σ, pksig, pksan, π).

2.3 Correctness of Sanitizable Signature Schemes
We require the usual correctness requirements to hold. In a nutshell, ev-
ery honestly signed, or sanitized, message/signature pair must verify, while
an honestly generated proof on an honestly generated message/signature
pair must point to the correct accountable party. Refer to [8] for a formal
definition.

2.4 Security of Sanitizable Signature Schemes
Next, we introduce our security model. We only require a subset of the
state-of-the-art properties [8, 12, 24]. Namely, we require immutability, and
non-interactive public accountability. Our proofs of the construction can di-
rectly be reduced to these properties. Thus, we do not require unlinkability,
privacy, or transparency. However, non-interactive public accountability im-
plies signer-accountability, sanitizer-accountability, and unforgeability [11].
Moreover, we do not require the strong definitions given by Krenn et al. [26].
These definitions take also the signature σ itself into account, which is not
necessary in our case.

2.5 Immutability
Clearly, a sanitizer must only be able to sanitize the admissible blocks de-
fined by ADM. This also prohibits deleting, or appending blocks from a
given message m. Moreover, the adversary is given full oracle access, while
it is also allowed to generate the sanitizer key pair.

Definition 2 (Immutability) An SSS is immutable, if for any ppt adver-
sary A there exists a negligible function ν such that Pr[ImmutabilitySSS

A (λ) =
1] ≤ ν(λ) , where the corresponding experiment is defined in Fig. 1.

2.6 Non-Interactive Public Accountability
Non-interactive public accountability allows everyone to decide whether a
sanitizer was involved. This is modeled by requiring that Judge works with
an empty proof, i.e., π = ⊥. Hence, no secret keys are required to find the
accountable party, and Proof can be defined as ⊥.

Prismacloud Deliverable D5.9

41 of 100

Experiment ImmutabilitySSS
A (λ)

(pksig, sksig)← KGensig(1λ)
(m∗, σ∗, pk∗)← ASign(·,sksig,·,·),Proof(sksig,·,·,·,·)(pksig)

for i = 1, 2, . . . , q let (mi, pksan,i,ADMi) index the queries to Sign
return 1, if Verify(m∗, σ∗, pksig, pk∗) = true ∧

(∀i ∈ {1, 2, . . . , q} : pk∗ 6= pksan,i ∨
m∗ /∈ {MOD(mi) | MOD with ADMi(MOD) = 1})

return 0

Figure 1: Immutability

Experiment PubaccountabilitySSS
A (λ)

(pksig, sksig)← KGensig(1λ)
(pksan, sksan)← KGensan(1λ)
(pk∗,m∗, σ∗)← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan)(pksig, pksan)

for i = 1, 2, . . . , q let (mi,ADMi, pksan,i),
and σi index the queries/answers to/from Sign
for j = 1, 2, . . . , q′ let (mj ,MODj , σj , pksig,j),
and (m′j , σ′j) index the queries/answers to/from Sanit

return 1, if Verify(m∗, σ∗, pksig, pk∗) = true ∧
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗) 6= (pksan,i,mi) ∧
Judge(m∗, σ∗, pksig, pk∗,⊥) = Sig

return 1, if Verify(m∗, σ∗, pk∗, pksan) = true ∧
∀j ∈ {1, 2, . . . , q′} : (pk∗,m∗) 6= (pksig,j ,m

′
j) ∧

Judge(m∗, σ∗, pk∗, pksan,⊥) = San
return 0

Figure 2: Non-Interactive Public Accountability

Definition 3 (Non-Interactive Public Accountability) An SSS is
non-interactive publicly accountable, if for any efficient adversary A there
exists a negligible function ν such that: Pr[PubaccountabilitySSS

A (λ) = 1] ≤
ν(λ) , where the corresponding experiment is defined in Fig. 2.

Definition 4 (Secure SSS) We call an SSS secure, if it is correct, im-
mutable, and non-interactive publicly accountable.

We stress again, that we neither require unlinkability, transparency, nor
privacy in our case, which may allow for more efficient realizations.

Prismacloud Deliverable D5.9

42 of 100

3 Cryptographically Enforcing the Four-Eyes
Principle

In this section, we introduce the framework for signatures enforcing the 4EP.
This includes suitable security definitions, which capture the main idea of
the 4EP.

3.1 Our Framework
Our main idea is that a single party generates a message m, signs it, and
asks for approval. Thus, after signature generation, two additional entities
have to approve the message before it is considered valid by third parties,
i.e., by verifiers. In particular, as the name already suggests, the approvers
must only be able to approve a message m. Hence, an approver must not be
able to generate or change the message without invalidating the signature.

Definition 5 (4EP-Signatures) A signature scheme 4EPSIG enforcing
the 4EP consists of five ppt algorithms, i.e., (KGensig,KGenApp, Sign,App,
Verify) such that:

1. Signer Key Generation: The signer key pair generation creates a key
pair for the signer; a private key and the corresponding public key,
based on λ: (pkSign, skSign)← KGensig(1λ).

2. Approver Key Generation: The approver key pair generation also re-
turns a private key and the corresponding public key, based on λ, but
for the approver(s): (pkApp, skApp) ← KGenApp(1λ). If we have more
than one key, we address them with a subscript.

3. Signing: The Sign algorithm takes as input a message m, sksig, and
two approver public keys pkApp,1, and pkApp,2. It outputs a signature
σ ← Sign(m, skSign, {pkApp,1, pkApp,2}). For easier analysis, we require
that this algorithm returns ⊥, if pkApp,1 = pkApp,2. We also assume
a canonical ordering of the set {pkApp,1, pkApp,2}. We assume that
pkApp,1 denotes the “smallest” element in {pkApp,1, pkApp,2}, denoted
as pkApp,1 ≺ pkApp,2.

4. Approving: Algorithm Approve takes a message m to approve, a sig-
nature σ, pkSign, an approver public key pkApp, and an approver se-
cret key skApp. It approves the message m for the given parameters.
Thus, App outputs a new, (potentially only partially) approved signa-
ture σ′ ← Approve(m,σ, pkSign, pkApp, skApp).

5. Verification: The Verify algorithm outputs a decision d ∈
{true, false}, verifying the signature σ for a message m
w.r.t. the public keys pkSign, pkApp,1, and pkApp,2: d ←
Verify(m,σ, pkSign, {pkApp,1, pkApp,2}).

Prismacloud Deliverable D5.9

43 of 100

3.2 Correctness of 4EP Signature Schemes
As usual, we require the correctness properties to hold. In particular, we
require that ∀λ ∈ N, ∀(pkSign, skSign) ← KGensig(1λ), ∀(pkApp,1, skApp,1) ←
KGenApp(1λ), ∀(pkApp,2, skApp,2) ← KGenApp(1λ), where pkApp,1 6= pkApp,2,
∀σ ← Sign(m, skSign, {pkApp,1, pkApp,2}) we have true = Verify(m,σ′,
pkSign, {pkApp,1, pkApp,2}), where σ′ ← Approve(m,Approve(m,σ, pkSign,
pkApp,2, skApp,1), pkSign, pkApp,1, skApp,2), and also true = Verify(m,σ′′, pkSign,
{pkApp,1, pkApp,2}), over all random coins used in any of the algorithms,
where σ′′ ← Approve(m,Approve(m,σ, pkSign, pkApp,1, skApp,2), pkSign, pkApp,2,
skApp,1). In other words, if both approvers approve the message m signed
by the signer in any order, the signature must verify.

3.3 Security of 4EP-Signatures
Next, we introduce the required security guarantees these type of signa-
tures must provide. In a nutshell, the main security guarantee we want to
achieve is unforgeability, even against insiders. Only if all parties agree,
the signature is considered valid. As we have three different entities, we
need to consider all constellations. In the definitions, we ignore the case
pkApp,1 = pkApp,2, as this only happens with negligible probability.

3.4 Outsider Unforgeability
The first notion we introduce is outsider unforgeability. This definition re-
quires that an adversary A not having any secret keys is not able to produce
any validating signature σ∗ corresponding to a message m∗ it has never seen
a signed, and fully approved, signature for.

Definition 6 (Outsider Unforgeability) An 4EPSIG is outsider un-
forgeable, if for any ppt adversary A there exists a negligible function ν
such that Pr[Outsider − Unforgeability4EPSIG

A (λ) = 1] ≤ ν(λ) , where the cor-
responding experiment is defined in Fig. 3.

3.5 Signer Unforgeability
The second notion we introduce is signer unforgeability. This definition
requires that an adversary A able to generate the key pair for the signer is
not able to produce any validating signature σ∗ corresponding to a message
m∗ it has never seen a signed, and fully approved, signature for, if the
approver public keys are generated honestly.

Definition 7 (Signer Unforgeability) An 4EPSIG is signer unforgeable,
if for any ppt adversary A there exists a negligible function ν such that

Prismacloud Deliverable D5.9

44 of 100

Experiment Outsider − Unforgeability4EPSIG
A (λ)

(pkSign, skSign)← KGenSign(1λ)
(pkApp,1, skApp,1)← KGenApp(1λ)
(pkApp,2, skApp,2)← KGenApp(1λ)
Q1 = Q2 = Q3 ← ∅
(m∗, σ∗)← ASign(·,skSign,·),Approve1(·,·,·,·,skApp,1)

Approve2(·,·,·,·,skApp,2) (pkSign, pkApp,1, pkApp,2)
where oracle Sign on input mi, skSign, {pkApp,1,i, pkApp,2,i}:

let σ ← Sign(m, skSign, {pkApp,1,i, pkApp,2,i})
return ⊥, if σ = ⊥
let Q1 ← Q1 ∪ {(pkSign, {pkApp,1,i, pkApp,2,i},mi)}
return σ

where oracle Approve1 on input mi, σi, pkSign,i, pkApp,i, skApp,1:
let σ ← Approve(mi, σi, pkSign, pkApp,i, skApp,1)
return ⊥, if σ = ⊥
let Q2 ← Q2 ∪ {(pkSign,i, {pkApp,1, pkApp,i},mi)}
return σ

where oracle Approve2 on input mi, σi, pkSign,i, pkApp,i, skApp,2:
let σ ← Approve(mi, σi, pkSign, pkApp,i, skApp,2)
return ⊥, if σ = ⊥
let Q3 ← Q3 ∪ {(pkSign,i, {pkApp,i, pkApp,2},mi)}
return σ

return 1, if true = Verify(m∗, σ∗, pkSign, {pkApp,1, pkApp,2}) ∧
((pkSign, {pkApp,1, pkApp,2},m∗) /∈ Q1 ∨
(pkSign, {pkApp,1, pkApp,2},m∗) /∈ Q2 ∨
(pkSign, {pkApp,1, pkApp,2},m∗) /∈ Q3)

return 0

Figure 3: Outsider Unforgeability

Pr[Signer − Unforgeability4EPSIG
A (λ) = 1] ≤ ν(λ) , where the corresponding

experiment is defined in Fig. 4.

3.6 1Approver Unforgeability
The next notion we introduce is 1Approver unforgeability. This definition
requires that an adversary A able to choose a single key pair for an approver,
is not able to produce any validating signature σ∗ for a message m∗ it has
never seen a signed, and fully approved, signature for.

Definition 8 (1Approver Unforgeability) An 4EPSIG is 1Approver un-
forgeable, if for any ppt adversary A there exists a negligible function ν such
that Pr[1Approver − Unforgeability4EPSIG

A (λ) = 1] ≤ ν(λ) , where the corre-
sponding experiment is defined in Fig. 5.

Prismacloud Deliverable D5.9

45 of 100

Experiment Signer − Unforgeability4EPSIG
A (λ)

(pkApp,1, skApp,1)← KGenApp(1λ)
(pkApp,2, skApp,2)← KGenApp(1λ)
Q1 = Q2 ← ∅
(pk∗,m∗, σ∗)← AApprove1(·,·,·,·,skApp,1),

Approve2(·,·,·,·,skApp,2) ({pkApp,1, pkApp,2})
where oracle Approve1 on input mi, σi, pkSign,i, pkApp,i, skApp,1:

let σ ← Approve(mi, σi, pkSign,i, pkApp,i, skApp,1)
return ⊥, if σ = ⊥
let Q1 ← Q1 ∪ {(pkSign,i, {pkApp,1, pkApp,i},mi)}
return σ

where oracle Approve2 on input mi, σi, pkSign,i, pkApp,i, skApp,2:
let σ ← Approve(mi, σi, pkSign,i, pkApp,i, skApp,2)
return ⊥, if σ = ⊥
let Q2 ← Q2 ∪ {(pkSign,i, {pkApp,i, pkApp,2},mi)}
return σ

return 1, if true = Verify(m∗, σ∗, pk∗, {pkApp,1, pkApp,2}) ∧
((pk∗, {pkApp,1, pkApp,2},m∗) /∈ Q1 ∨
(pk∗, {pkApp,1, pkApp,2},m∗) /∈ Q2)

return 0

Figure 4: Signer Unforgeability

Experiment 1Approver − Unforgeability4EPSIG
A (λ)

(pkSign, skSign)← KGenSign(1λ)
(pkApp, skApp)← KGenApp(1λ)
Q1 = Q2 ← ∅
(pk∗,m∗, σ∗)← ASign(·,skSign,·),Approve(·,·,·,·,skApp)(pkSign, pkApp)
where oracle Sign on input mi, skSign, {pkApp,1,i, pkApp,2,i}:

let σ ← Sign(mi, skSign, {pkApp,1,i, pkApp,2,i})
return ⊥, if σ = ⊥
let Q1 ← Q1 ∪ {(pkSign, {pkApp,1,i, pkApp,2,i},mi)}
return σ

where oracle Approve on input mi, σi, pkSign,i, pkApp,i, skApp:
let σ ← Approve(mi, σi, pkSign,i, pkApp,i, skApp)
return ⊥, if σ = ⊥
let Q2 ← Q2 ∪ {(pkSign,i, {pkApp,i, pkApp},mi)}
return σ

return 1, if true = Verify(m∗, σ∗, pkSign, {pk∗, pkApp}) ∧
((pkSign, {pk∗, pkApp},m∗) /∈ Q1 ∨
(pkSign, {pk∗, pkApp},m∗) /∈ Q2)

Figure 5: 1Approver Unforgeability

Prismacloud Deliverable D5.9

46 of 100

Experiment 2Approver − Unforgeability4EPSIG
A (λ)

(pkSign, skSign)← KGenSign(1λ)
Q ← ∅
({pk∗1, pk∗2},m∗, σ∗)← ASign(·,skSign,·)(pkSign)
where oracle Sign on input mi, skSign, {pkApp,1,i, pkApp,2,i}:

let σ ← Sign(m, skSign, {pkApp,1,i, pkApp,2,i})
return ⊥, if σ = ⊥
let Q ← Q∪ {(pkSign, {pkApp,1,i, pkApp,2,i},mi)}
return σ

return 1, if true = Verify(m∗, σ∗, pkSign, {pk∗1, pk∗2}) ∧
(pkSign, {pk∗1, pk∗2},m∗) /∈ Q

return 0

Figure 6: 2Approver Unforgeability

3.7 2Approver Unforgeability
We also require that even if two approvers work together, they cannot gen-
erate any valid signature on a message m∗ not endorsed by the signer. We
call this 2Approver unforgeability. This definition requires that an adver-
sary A is not able to generate both approvers’ public keys, and a validating
signature σ∗ corresponding to a message m∗ which has never been endorsed
by an honest signer.

Definition 9 (2Approver Unforgeability) An 4EPSIG is 2Approver un-
forgeable, if for any ppt adversary A there exists a negligible function ν such
that Pr[2Approver − Unforgeability4EPSIG

A (λ) = 1] ≤ ν(λ) , where the corre-
sponding experiment is defined in Fig. 6.

3.8 Signer/Approver Unforgeability
The next notion we introduce is Signer/Approver unforgeability. This defi-
nition says that A is not able to produce any validating signature σ∗ corre-
sponding to a message m∗ which was never approved by the honest approver,
even it can choose the other public keys.

Definition 10 (Signer/Approver Unforgeability) An 4EPSIG is
Signer/Approver unforgeable, if for any ppt adversary A there exists a neg-
ligible function ν such that Pr[Signer/Approver − Unforgeability4EPSIG

A (λ) =
1] ≤ ν(λ) , where the corresponding experiment is defined in Fig. 7.

Definition 11 We call an 4EPSIG secure, if it is correct, outsider unforge-
able, signer unforgeable, 1Approver unforgeable, 2Approver unforgeable, and
Signer/Approver unforgeable.

Prismacloud Deliverable D5.9

47 of 100

Experiment Signer/Approver − Unforgeability4EPSIG
A (λ)

(pkApp, skApp)← KGenApp(1λ)
Q ← ∅
(pk∗1, pk∗2,m∗, σ∗)← AApprove(·,·,·,·,skApp)(pkApp)
where oracle Approve on input mi, σi, pkSign,i, pkApp,i, skApp:

let σ ← Approve(mi, σi, pkSign,i, pkApp,i, skApp)
return ⊥, if σ = ⊥
let Q ← Q∪ {(pkSign,i, {pkApp,1,i, pkApp},mi)}
return σ

return 1, if true = Verify(m∗, σ∗, pk∗1, {pk∗2, pkApp}) ∧
(pk∗1, {pk∗2, pkApp},m∗) /∈ Q

return 0

Figure 7: Signer/Approver Unforgeability

We stress that we define a new oracle for each approver.

3.9 Relations Between Security Properties
Due to the three entities involved, which are even more than in standard
SSSs, we have to consider five different security properties. Obviously, as
one would expect, some are stronger than others. We clarify this statement
by proving the following theorems. Writing out the proofs also helps to
recognize the emerging pattern by which our construction can easily be
extended for more than two approvers.

Theorem 1 Signer/Approver Unforgeability implies 1Approver Unforge-
ability.

Proof 1 We prove this theorem by a standard reduction. In particular, let
A be the adversary breaking the 1Approver Unforgeability definition. We
can then construct an adversary B which uses A internally to break the
Signer/Approver Unforgeability. B proceeds as follows. It receives pkApp
from its own challenger. It then generates (pkSign, skSign) ← KGenSign(1λ).
It passes pkApp, and pkSign to A to initialize the adversary. The approve
oracle can be simulated using the oracle provided. The signing oracle can be
simulated honestly, as skSign is known. Eventually, A returns (pk∗,m∗, σ∗).
By assumption, we know that m∗ is fresh, B can return (pkSign, pk∗,m∗, σ∗)
as its own forgery attempt. The success probability of B equals the one of A.

Theorem 2 2Approver Unforgeability implies 1Approver Unforgeability.

Proof 2 Let A be the adversary breaking the 1Approver Unforgeability def-
inition. We can then construct an adversary B which uses A internally to

Prismacloud Deliverable D5.9

48 of 100

break the 2Approver Unforgeability. B proceeds as follows. It receives pkSign
from its own challenger. It then generates (pkApp, skApp)← KGenApp(1λ). It
passes pkApp, and pkSign to A to initialize the adversary. The signing oracle
can be simulated using the signing oracle provided. The approve oracle can be
simulated honestly, as skApp is known. Eventually, A returns (pk∗,m∗, σ∗).
By assumption, we know that m∗ is fresh, B can return ({pk∗, pkApp},m∗, σ∗)
as its own forgery attempt. The success probability of B equals the one of A.

Theorem 3 1Approver Unforgeability implies Outsider Unforgeability.

Proof 3 Let A be the adversary breaking the Outsider Unforgeability defi-
nition. We can then construct an adversary B which uses A internally to
break the 1Approver Unforgeability. B proceeds as follows. It receives pkSign,
and pkApp,1 from its own challenger. It then generates (pkApp,2, skApp,2) ←
KGenApp(1λ). It passes pkApp,1, pkApp,2, and pkSign to A to initialize the
adversary. The signing oracle can be simulated using the approve oracle
provided. The approve oracle can be simulated honestly, as skApp is known.
Eventually, A returns (m∗, σ∗). By assumption, we know that m∗ is fresh,
B can return (pkApp,2,m

∗, σ∗) as its own forgery attempt. The success prob-
ability of B equals the one of A.

Theorem 4 Signer/Approver Unforgeability implies Signer Unforgeability.

Proof 4 Let A be the adversary breaking the Outsider Unforgeability def-
inition. We can then construct an adversary B which uses A internally
to break the Signer/Approver Unforgeability. B proceeds as follows. It re-
ceives pkApp,1 from its own challenger. It then generates (pkApp,2, skApp,2)←
KGenApp(1λ). It passes pkApp,1, pkApp,2 to A to initialize the adversary.
One approve oracle can be simulated honestly, as skApp,2 is known. The
other approve oracle is the one provided to B itself. Eventually, A re-
turns (pk∗,m∗, σ∗). By assumption, we know that m∗ is fresh, B can return
(pk∗, pkApp,2,m

∗, σ∗) as its own forgery attempt. The success probability of
B equals the one of A.

Theorem 5 Signer Unforgeability implies Outsider Unforgeability.

Proof 5 Let A be the adversary breaking the Outsider Unforgeability defini-
tion. We can then construct an adversary B which uses A internally to break
the 1Approver Unforgeability. B proceeds as follows. It receives pkApp,1,
and pkApp,2, from its own challenger. It then generates (pkSign, skSign) ←
KGenSign(1λ). It passes pkApp,1, pkApp,2, and pkSign to A to initialize the
adversary. The approve oracles can be simulated using the oracles provided.
The signing oracle can be simulated honestly, as skApp is known. Eventu-
ally, A returns (m∗, σ∗). By assumption, we know that m∗ is fresh, B can
return (pkSign,m

∗, σ∗) as its own forgery attempt. The success probability of
B equals the one of A.

Prismacloud Deliverable D5.9

49 of 100

It is easy to see that our definitions, and the implications, can easily be
extended for more than two approvers.

4 Construction of 4EP-Signatures
Next, we introduce our construction. The construction makes exclusive
black-box use of SSS. The main idea is to use two SSS instances, signing
the same message m. The first signature is sanitizable by the first approver,
and the second signature by the second approver. Both signatures are gen-
erated by the entity generating the message’s content m. In more detail,
the initially unapproved content m is provided as non admissible, such that
it cannot be changed by any approver. Each approver has to sanitize an
admissible part, which was initially empty, into m and adjust the respec-
tive signature. A verifier then expects that both signatures point to the
respective approver, as we require non-interactive public accountability.

Construction 1 (Secure 4EPSIG.) We now construct 4EPSIG = (KGensig,
KGenApp,Sign,App,Verify) such that it is secure.

KGensig. To generate the key pair for the signer, do the following steps.

1. Let (pksig, sksig)← SSS.KGensig(1λ).
2. Return (pksig, sksig).

KGenApp. To generate the key pair for an approver, do the following steps.

1. Let (pksan, sksan)← SSS.KGensan(1λ).
2. Return (pksan, sksan).

Sign. To generate a signature σ, on input of m, skSign, {pkApp,1, pkApp,2}
do the following steps. Note, we require canonical ordering of
{pkApp,1, pkApp,2}.

1. If pkApp,1 = pkApp,2, return ⊥.
2. Set ADM = ({1}, 5), and

m′ = (⊥,m, pkApp,1, pkApp,2, pkSign).
3. Let σ1 ← SSS.Sign(m′, skSign, pkApp,1,ADM).
4. Let σ2 ← SSS.Sign(m′, skSign, pkApp,2,ADM).
5. Return (σ1, σ2).

Verify. To verify a signature σ = (σ1, σ2), on input m, pkSign, and
{pkApp,1, pkApp,2} do:

1. Check that ADM1 = ADM2 = ({1}, 5), where ADM1 is taken
from σ1, and ADM2 taken from σ2. If not, return ⊥.

Prismacloud Deliverable D5.9

50 of 100

2. Let m′ = (m,m, pkApp,1, pkApp,2, pkSign).
3. If San = SSS.Judge(m′, σ1, pkSign, pkApp,1,⊥), and San =

SSS.Judge(m′, σ2, pkSign, pkApp,2,⊥), return true.
4. Return false.

Note, if the “normal” verification fails, Judge already outputs Sig, as
we require non-interactive public accountability of the used SSS.

Approve. Let pk′App denote the public key corresponding to skApp. Then, to
approve a message m, on input of σ = (σ1, σ2), pkSign, pkApp, and
skApp, do:

1. Return ⊥, if ADM1 6= ADM2 6= ({1}, 5), where ADM1 is taken
from σ1, and ADM2 taken from σ2, or if pkApp = pk′App.

2. If pk′App ≺ pkApp, let pkApp,1 ← pk′App, and pkApp,2 ← pkApp.
Otherwise, let pkApp,1 ← pkApp, and pkApp,2 ← pk′App.

3. Let m′ ← (⊥,m, pkApp,1, pkApp,2, pkSign).
4. Let m′′ ← (m,m, pkApp,1, pkApp,2, pkSign).
5. Let MOD← {(1,m)}.
6. Let d1,1 ← SSS.Verify(m′, σ1, pkSign, pkApp,1).
7. Let d1,2 ← SSS.Verify(m′′, σ1, pkSign, pkApp,1).
8. Let d2,1 ← SSS.Verify(m′, σ2, pkSign, pkApp,2).
9. Let d2,2 ← SSS.Verify(m′′, σ2, pkSign, pkApp,2).

10. If pk′App = pkApp,1, do:
(a) Return ⊥, if d2,1 = d2,2 = false.
(b) Let (m′′, σ′)
← Sanit(m′,MOD, σ1, pkSign, skApp).

(c) Return σ = (σ′, σ2).
11. If pk′App = pkApp,2, do:

(a) Return ⊥, if d1,1 = d1,2 = false.
(b) Let (m′′, σ′)
← Sanit(m′,MOD, σ2, pkSign, skApp).

(c) Return (σ1, σ′).
12. Return ⊥.

The proof of the following theorem is given in App. A.

Theorem 6 If the underlying SSS is secure, then the above construction is
secure.

We stress that it is outside of the model whether the given public keys
can be trusted. This can, e.g., be achieved by a standard PKI, or inter-
organizational enforcement.

Prismacloud Deliverable D5.9

51 of 100

4.1 Extensions
Our construction paradigm can be enriched to achieve even more possibili-
ties. We now present some of these alterations. We leave it as open work if
these extensions are secure in a formal sense.

Multiple-Eyes Principle Sometimes, having two approvers for a given
message m is not enough, especially if very important decisions are made.
Our construction paradigm extends to this case in a straightforward way.
The signer simply chooses more sanitizers, and adjusts the signed message
m accordingly, i.e., adds more public keys, which need to be immutable.

Threshold Version We require that all approvers approve the message m
before it is considered valid. A slight modification allows for a “t-out-of-n”-
style signature scheme. Namely, the signer can also sign the information how
many approvers are required before a signature becomes valid. Compared
to standard threshold signature schemes, this also allows to see which party
has actually approved a message m.

5 Conclusion and Future Work
We have shown how to enforce the four-eye principle by black-box access
to sanitizable signatures. The underlying SSS is not required to fulfill all
security requirements. We have then shown how to further alter our defini-
tions, and the construction, to achieve additional goals such as a threshold
version and more than two approvers. A still open problem is how to achieve
Approver-Privacy, meaning that it is not clear which approver has approved
a message, or if the other approver did not approve the message yet, and
unlinkability.

Acknowledgments
A. Bilzhause was partly supported by BMBF grant agreement n◦ 01DH14022
(SECOR). H. C. Pöhls has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement
n◦ 644962 (PRISMACLOUD). K. Samelin was partly supported by ERC
grant agreement n◦ 321310 (PERCY).

References
[1] J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, a. shelat, and

B. Waters. Computing on authenticated data. Cryptology ePrint
Archive, Report 2011/096, 2011. http://eprint.iacr.org/.

Prismacloud Deliverable D5.9

52 of 100

[2] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of
digital signatures (extended abstract). In EuroCrypt, pages 591–606,
1998.

[3] G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik. Sanitizable
signatures. In ESORICS, pages 159–177, 2005.

[4] B. Baum-Waidner and M. Waidner. Round-optimal and abuse free op-
timistic multi-party contract signing. In ICALP, pages 524–535, 2000.

[5] M. Bellare and G. Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In CCS, pages 390–399, 2006.

[6] A. Boldyreva. Threshold signatures, multisignatures and blind signa-
tures based on the gap-diffie-hellman-group signature scheme. In PKC
2003, pages 31–46, 2003.

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Ver-
ifiably Encrypted Signatures from Bilinear Maps. In EUROCRYPT,
pages 416–432, 2003.

[8] C. Brzuska, M. Fischlin, T. Freudenreich, A. Lehmann, M. Page,
J. Schelbert, D. Schröder, and F. Volk. Security of Sanitizable Sig-
natures Revisited. In Proc. of PKC 2009, pages 317–336. Springer,
2009.

[9] C. Brzuska, M. Fischlin, A. Lehmann, and D. Schröder. Sanitizable
signatures: How to partially delegate control for authenticated data. In
Proc. of BIOSIG, volume 155 of LNI, pages 117–128. GI, 2009.

[10] C. Brzuska, M. Fischlin, A. Lehmann, and D. Schröder. Unlinkability
of Sanitizable Signatures. In PKC, pages 444–461, 2010.

[11] C. Brzuska, H. C. Pöhls, and K. Samelin. Non-Interactive Public Ac-
countability for Sanitizable Signatures. In EuroPKI, pages 178–193,
2012.

[12] C. Brzuska, H. C. Pöhls, and K. Samelin. Efficient and Perfectly Un-
linkable Sanitizable Signatures without Group Signatures. In EuroPKI,
pages 12–30, 2013.

[13] S. Canard and A. Jambert. On extended sanitizable signature schemes.
In CT-RSA, pages 179–194, 2010.

[14] S. Canard, A. Jambert, and R. Lescuyer. Sanitizable signatures with
several signers and sanitizers. In AFRICACRYPT, pages 35–52, 2012.

Prismacloud Deliverable D5.9

53 of 100

[15] S. Canard, F. Laguillaumie, and M. Milhau. Trapdoor sanitizable sig-
natures and their application to content protection. In ACNS, pages
258–276, 2008.

[16] S. Canard and R. Lescuyer. Protecting privacy by sanitizing personal
data: a new approach to anonymous credentials. In ASIACCS, pages
381–392, 2013.

[17] H. de Meer, H. C. Pöhls, J. Posegga, and K. Samelin. Scope of security
properties of sanitizable signatures revisited. In ARES, pages 188–197,
2013.

[18] H. de Meer, H. C. Pöhls, J. Posegga, and K. Samelin. On the relation
between redactable and sanitizable signature schemes. In ESSoS, pages
113–130, 2014.

[19] D. Demirel, D. Derler, C. Hanser, H. C. Pöhls, D. Slamanig, and
G. Traverso. PRISMACLOUD D4.4: Overview of Functional and
Malleable Signature Schemes. Technical report, H2020 Prismacloud,
www.prismacloud.eu, 2015.

[20] D. Derler, H. C. Pöhls, K. Samelin, and D. Slamanig. A general frame-
work for redactable signatures and new constructions. In ICISC, pages
3–19, 2015.

[21] D. Derler and D. Slamanig. Rethinking privacy for extended sanitizable
signatures and a black-box construction of strongly private schemes. In
ProvSec, pages 455–474, 2015.

[22] V. Fehr and M. Fischlin. Sanitizable signcryption: Sanitization over
encrypted data (full version). Cryptology ePrint Archive, Report
2015/765, 2015. http://eprint.iacr.org/.

[23] E. Ghosh, O. Ohrimenko, and R. Tamassia. Verifiable member and
order queries on a list in zero-knowledge. ePrint, 632, 2014.

[24] J. Gong, H. Qian, and Y. Zhou. Fully-secure and practical sanitizable
signatures. In InsCrypt, volume 6584, pages 300–317, 2011.

[25] M. Klonowski and A. Lauks. Extended Sanitizable Signatures. In
ICISC, pages 343–355, 2006.

[26] S. Krenn, K. Samelin, and D. Sommer. Stronger security for sanitizable
signatures. In DPM, pages 100–117, 2015.

[27] M. Mambo, K. Usuda, and E. Okamoto. Proxy signatures for delegating
signing operation. In CCS ’96, pages 48–57, 1996.

Prismacloud Deliverable D5.9

54 of 100

[28] H. C. Pöhls, S. Peters, K. Samelin, J. Posegga, and H. de Meer. Mal-
leable signatures for resource constrained platforms. In WISTP, pages
18–33, 2013.

[29] H. C. Pöhls and K. Samelin. Accountable redactable signatures. In
ARES, pages 60–69, 2015.

[30] H. C. Pöhls, K. Samelin, and J. Posegga. Sanitizable Signatures in
XML Signature - Performance, Mixing Properties, and Revisiting the
Property of Transparency. In ACNS, volume 6715 of LNCS, pages
166–182. Springer, 2011.

[31] V. Shoup. Practical threshold signatures. In EuroCrypt, pages 207–220,
2000.

[32] D. H. Yum, J. W. Seo, and P. J. Lee. Trapdoor sanitizable signatures
made easy. In ACNS, pages 53–68, 2010.

A Proofs
Due to the given implications and separations, we only need to show that our
construction is 2Approver unforgeable, and also Signer/Approver unforge-
able. We prove each property on its own. Due to our choice of the given
primitives, the reductions are tight, i.e., we have only constant reduction
losses.

Theorem 7 Our construction is 2Approver unforgeable.

Proof 6 In this case, we can reduce the security of our construction to im-
mutability of the underlying SSS. In particular, we build an adversary B
which uses A internally in a black-box way. B proceeds as follows. It re-
ceives pkSign from its own challenger, and embeds it into pkSign. For every
ith signing query, B uses its own signing oracle to generate two signatures
on m′ = (⊥,m, pkApp,1,i, pkApp,2,i, pkSign) (with the correct public key order-
ing) for ADM = {{1}, 5}, and for pksan = pkApp,1,i, and the second sig-
nature for pkApp,2,i. These signatures are given to A. At some point, B
returns its forgery attempt ({pk∗1, pk∗2},m∗, σ∗). As we already know that
σ∗ = (σ∗1, σ∗2), true = SSS.Verify(m′∗, σ∗1, pkSign, pk∗1), and also true =
SSS.Verify(m′∗, σ∗2, pkSign, pk∗2), where m′∗ = (m∗,m∗, pk∗1, pk∗2, pkSign), (or
m′∗ = (m∗,m∗, pk∗2, pk∗1, pkSign), depending on the ordering of the public
keys), B can output (m′∗, σ∗1, pk∗1) or (m′∗, σ∗2, pk∗2), depending on which one
is fresh (possibly even both), which can easily be deduced by looking at the
signing queries. As B can perfectly simulate A’s environment, and m∗ is
fresh by assumption (and thus also m′∗), as at least one of the public keys
is fresh (in the context with m∗), the probability that B wins is the same as
A’s.

Prismacloud Deliverable D5.9

55 of 100

Theorem 8 Our construction is Signer/Approver unforgeable.

Proof 7 In this case, we only have to consider the case where A was
able to generate a signature σ∗ which verifies under the given public key,
but was never sanitized, i.e., approved, but Judge decided San. Note that
the message in question for the underlying SSS also contains the public
keys. This case can be reduced to the non-interactive public-accountability
of the used SSS. Namely, we can construct an adversary B which uses
A internally. B proceeds as follows. It receives pksan from its own chal-
lenger. pkSign is discarded. It embeds pksan into pkApp. Every approv-
ing query is delegated to the sanitization oracle. Nothing else has to be
simulated. At some point A returns (pk∗1, pk∗2,m∗, σ∗). We already know,
by assumption, that (pk∗1, {pk∗2, pkApp},m∗) is fresh. Thus, B can return
(pk∗2,m′∗, σ∗1) or (pk∗2,m′′∗, σ∗2) as its own forgery attempt, where m′∗ =
(m∗,m∗, pk∗2, pkApp, pk∗1) or m′′∗ = (m∗,m∗, pk∗1, pk∗2, pkApp), depending on
the ordering of the public keys. As B can perfectly simulate A’s environ-
ment, B’s success probability equals the one of A.

Prismacloud Deliverable D5.9

56 of 100

Towards Authenticity and Privacy Preserving
Accountable Workflows

David Derler1, Christian Hanser1, Henrich C. Pöhls2, and Daniel Slamanig1

1 IAIK, Graz University of Technology, Austria
{david.derler|christian.hanser|daniel.slamanig}@tugraz.at
2 Institute of IT-Security and Security Law & Chair of IT-Security,

University of Passau, Germany
hp@sec.uni-passau.de

Abstract. Efficient and well structured business processes (and their
corresponding workflows) are drivers for the success of modern enter-
prises. Today, we experience the growing trends to have IT supported
workflows and to outsource enterprise IT to the cloud. Especially when
executing (interorganizational) business processes on third party infras-
tructure such as the cloud, the correct execution and documentation
become very important issues. To efficiently manage those processes, to
immediately detect deviations from the intended workflows and to hold
tenants (such as the cloud) accountable in such (decentralized) processes,
a mechanism for efficient and accountable monitoring and documenta-
tion is highly desirable. Ideally, these features are provided by means of
cryptography in contrast to organizational measures.

It turns out that variants of malleable signature schemes, i.e., signature
schemes where allowed modifications of signed documents do not invali-
date the signature, as well as proxy (functional) signature schemes, i.e.,
signature schemes which allow the delegation of signing rights to other
parties, seem to be a useful tool in this context. In this paper, we review
the state of the art in this field, abstractly model such workflow sce-
narios, investigate desirable properties, analyze existing instantiations of
aforementioned signature schemes with respect to these properties, and
identify interesting directions for future research.

1 Introduction

To efficiently handle frequently recurring processes within enterprises, it is ad-
vantageous to define standardized business processes. An ICT supported techni-
cal realization of a business process is usually denoted as a workflow [30]. Such a
workflow can be seen as an abstract process, which defines a certain sequence of
tasks as well as conditions on how participating entities have to complete these
tasks. In such a context, workflows may span various departments within an
enterprise or even various enterprises (interorganizational workflows).

The authors have been supported by EU H2020 project Prismacloud, grant agree-
ment n◦644962.

Prismacloud Deliverable D5.9

57 of 100

To always have an overview of the current state of concrete workflow in-
stances and to be able to react to deviations from the defined workflows, it is
important to document each step and to report it to some entity. Thereby, an
inherent requirement is that these reports allow to verify whether delegatees
acted within their boundaries and that each task can be attributed to a certain
delegatee. This shall hold true especially if the process is interorganizational.
In addition, it is desireable to automatically derive information, e.g., to issue
warnings if certain constraints in a workflow are not met. Furthermore, it is
often required that documentations of certain workflows are retained in an un-
forgeable recording for auditing or legal purposes. For example, the European
data protection law requires an organization to document the usage of data [6].
However, the boundaries within each participating entity can act in a workflow
might already be a sensitive business internal. Hence, it should not be disclosed
to other parties (e.g., other enterprises in interorganizational workflows). Thus,
an additional requirement is that the defined boundaries are not revealed to
entities verifying a report, i.e., to ensure privacy, while still being able to check
whether delegatees acted within their boundaries. We stress that this goal is in
contrast to confidentiality of task reports. In particular, privacy requires that—
even when the task reports are available in plain—the defined boundaries are
not recoverable.

A suitable application is outsourcing inter- or intra-enterprise workflows to
some environment that is not under full control, e.g., to the cloud. An automated
process outsourced to the cloud may then run on behalf of the participants to
carry out a task within such a workflow. A participating enterprise will be inter-
ested in the correctness of the workflow, the compliance with associated privacy
requirements and to hold the cloud accountable. We note that especially in con-
text of accountability there are significant efforts to provide and standardize
frameworks for cloud accountability, e.g., as demonstrated within the A4Cloud
project [44]. We note that we are interested in a more abstract view on workflows
and cryptographic tools that allow to realize the aforementioned requirements.

1.1 Related Work

Besides [40, 39, 34], not much attention has been paid to cryptographically en-
forcing certain properties of workflows. Subsequently, we review the existing
approaches and other related concepts.

In [40, 39], the authors investigate traceability and integrity aspects of de-
centralized interorganizational workflow executions. This work focuses on pre-
serving authenticity and integrity with respect to logical relations (AND, OR,
XOR) among certain tasks in a priori defined workflows, while the concrete
agents executing the workflow tasks do not need to be pre-specified (these could
be dynamically chosen with the help of some discovery service). To do so, they
use policy-based cryptography [4], where every agent gets issued credentials from
some central authorities (specifying attributes that the agent satisfies). Then, for
each workflow step a policy defines what needs to be satisfied for the execution of
the respective task (basically the required decryption keys can only be obtained

Prismacloud Deliverable D5.9

58 of 100

if the policy is satisfied). In addition they use group signatures to guarantee
anonymity of honest agents, but support traceability of malicious ones.

In contrast, [34] allows to dynamically define those workflows during the
workflow execution. That is, they map the workflow to a (dynamically extend-
able) tree, where each node in the tree is interpreted as one particular workflow
task. Then, building upon the hierarchical identity based signature scheme in
[35], one can build a hierarchy of signing keys (i.e., each node in possession of
a signing key can issue signing keys for its child nodes). These signing keys are
then used to sign some task-dependent information and, due to the hierarchical
nature of the underlying primitive, this delivers an authentic documentation of
the workflow execution regarding the logical relations among subsequent tasks.

Orthogonal to our goals of authenticity, accountability and privacy, variants
of attribute-based encryption were used for cryptographically ensured access
control with respect to some policy in [43, 2, 22]. Recent work [21], thereby, also
considers the possibility to hide the access policy.

Somehow close to our goal is [28], but it does not target the enforcement of
properties of workflows. However, the authors use malleable signatures to allow
to remove (potentially confidential) information from signed data, while not in-
fluencing source authentication in service oriented architectures (SOAs). In their
approach, workflow participants exchange signed data based on predecessor-
successor relationships. This is not what we are looking for in this case.

Finally, the work done in this paper relates to data provenance, which deals
with identifying the origins of data and also giving a record of the derivation [41].
More precisely, this work relates to the aspect of process documentation found
in data provenance, i.e., the proposed solutions will allow to verify whether a
certain workflow was carried out as intended. This and other aspects of data
provenance have been surveyed and studied in the literature, for example in [47,
42, 23]. Our work may be considered as realizing some aspects of provenance
with cryptographic guarantees, i.e., to ensure that any deviation from a planned
workflow will be detectable and that each workflow participant can be held
accountable for it’s actions.

1.2 Motivation and Contribution

The few existing approaches to authenticity, accountability and privacy in work-
flows [40, 39, 34] rely on rather non-standard and often complex schemes. Given
the importance of outsourcing computations and processes to cloud providers,
it is thus an interesting challenge to look for simpler and more efficient solutions
that rely on standard cryptographic primitives.

We propose two generic patterns to document the workflow executions, which
can be instantiated using various different signature primitives. These patterns
follow the well-known delegation-by-certificate approach from proxy signatures
[37], and—in contrast to existing solutions—allow to obtain particularly efficient
schemes which only make use of standard cryptographic primitives with multiple
efficient instantiations. In addition to existing work, which only considers tasks
from an abstract point of view, we also consider the outputs of tasks and their

Prismacloud Deliverable D5.9

59 of 100

corresponding documentation (reports).3 In this context, we discuss means to
predefine the structure of reports to ease an automated processing and also cover
related privacy issues. We develop a set of requirements for workflow documen-
tation systems and analyze possible instantiations of our generic patterns from
different types of signature schemes with respect to these requirements. Finally,
we discuss open problems and future directions.

2 Preliminaries

Throughout the paper we require the notion of digital signature schemes, which
we recall subsequently. A digital signature scheme (DSS) is a triple (KeyGen,
Sign,Verify) of efficient algorithms. Thereby, KeyGen is a probabilistic key gen-
eration algorithm that takes a security parameter κ ∈ N as input and outputs
a secret (signing) key sk and a public (verification) key pk. Further, Sign is a
(probabilistic) algorithm, which takes a message M ∈ {0, 1}∗ and a secret key sk
as input, and outputs a signature σ. Finally, Verify is a deterministic algorithm,
which takes a signature σ, a message M ∈ {0, 1}∗ and a public key pk as input,
and outputs a single bit b ∈ {0, 1} indicating whether σ is a valid signature for
M under pk.

A digital signature scheme is required to be correct, i.e., for all security pa-
rameters κ, all (sk, pk) generated by KeyGen and all M ∈ {0, 1}∗ one requires
Verify(Sign(M, sk),M, pk) = 1. Additionally, for security one requires existential
unforgeability under adaptively chosen-message attacks (EUF-CMA) [24].

3 Workflow Model

In the following we align our notation largely with the one used in [34]. A work-
flow W comprises some central entity called the workflow manager (WM) who
wants to outsource a workflow to some set A of entities denoted as agents.
Thereby, every workflow can be decomposed into single atomic tasks ti ∈ T ,
where every task is executed by some agent. For instance, task ti ∈ T may be
executed by agent Aj ∈ A, which we denote by Aj(ti).

As it is common when modeling workflows (e.g., [29]), we define a workflow
as a directed acyclic graph W = (T,E), where each vertex ti ∈ T represents one
particular task and edges ej ∈ E ⊆ T × T represent task dependencies, i.e., a
vertex (tu, tv) ∈ E means that task tv follows after the completion of task tu.
Now, we augment such a simple workflow by the following semantics and in the
remainder of the paper we always mean such an augmented workflow when we
speak of a workflow. Each vertex ti ∈ T with at least two outgoing edges (i.e.,
where outdegree deg+(ti) ≥ 2) is called a split and each vertex ti with at least
two incoming edges (i.e., where indegree deg−(ti) ≥ 2)) is called a join. Each
split and join is associated with a logical type {AND,OR,XOR}. In case of an
AND split all edges are executed in parallel; in case of an XOR split exactly

3 This could also be interesting in the context of data provenance.

Prismacloud Deliverable D5.9

60 of 100

one edge must be executed; and in an OR split at least one edge needs to be
executed. To illustrate this idea, we present an example of a simple workflow in
Figure 1A simple workflow examplefigure.1.1. For ease of presentation we label
each outgoing edge with the respective type.

t1 t2

t3

t4

t5

t6

t7

t8 t9

AND

AND

XOR

XOR

Fig. 1. A simple workflow example.

To distinguish between successful and unsuccessful workflow executions, we need
the notion of a trace. A trace τ of a workflow is a sequence of tasks in the order
of their execution and a trace is called valid if it is compatible with the workflow.
Let us look at the example in Figure 1A simple workflow examplefigure.1.1. For
instance, the trace τ = (t1, t2, t3, t5, t7, t8, t9) is invalid, but τ ′ = (t1, t2, t3, t4, t5, t7, t8, t9)
is a valid trace.

Another issue that needs to be addressed is that not every agent may be
allowed to execute every task. Consequently, we use assignment α(τ) to denote
the sequence indicating which agents have executed the respective task. For
instance, we may have α(τ ′) = (A1, A2, A3, A4, A5, A6, A7, A8). Furthermore, ei-
ther the WM may specify which potential set of agents is allowed to execute each
task (static assignment) or each agent may dynamically decide which agents may
execute the subsequent task(s) (dynamic assignment). In case of a static assign-
ment, we call an assignment α(τ ′) valid if it is compatible with the restrictions
set by the WM. We note that our above notation deviates from the one in [34]
who only consider dynamic assignments. Also, in contrast to [34] who solely look
at the tasks in a workflow from a very abstract level, we are also interested in
properties of the outputs of the tasks and thus get a bit more concrete. There-
fore, we introduce the notion of the documentation of one particular task in a
workflow and denote it as the report of a task, or report in short.

Subsequently, we introduce desirable properties for the documentation of
workflow executions. Firstly, the most crucial requirement in our setting is that
reports are protected against unauthorized modifications. Recall, that we do not
consider the orthogonal feature of providing confidentiality for workflow data.

Requirement 1. The integrity of the reports needs to be ensured.

Furthermore, it is required that only the workflow manager and the execution
agent, which is actually performing a certain task, can produce a valid report.

Prismacloud Deliverable D5.9

61 of 100

Requirement 2. For a particular task ti, no one except the workflow manager
and the agent(s) assigned to ti is/are capable of creating task reports that are
accepted by an auditor.

In this context, it is also important that each report can be used to identify the
respective execution agent (workflow manager), i.e., to ensure accountability.

Requirement 3. The execution agent (workflow manager) that performs a cer-
tain task can be held accountable for its actions.

However, as long as the work is done correctly, a delegator might want to account
for the work of a delegatee, while still being able to accuse the delegatee in case
of a dispute.4

Requirement 4. One can not publicly verify whether a delegator or a delegatee
created a certain report, while it is still possible to provide a proof assigning the
task execution to one of the aforementioned parties.

In addition, it is desirable to automatically derive information, e.g., to issue
warnings if certain constraints in a workflow are not met.

Requirement 5. Task reports allow to derive the order of the tasks in a certain
workflow instance.

3.1 Bringing Signatures to Workflows

We can model workflows using the well-known delegation-by-certificate approach
from proxy signatures [37]. Subsequently, we describe two useful patterns.

Static assignment. Figure 2Pattern for statically assigned workflows. The tu-
ples (ri, σi) denote the task reports corresponding to Ai(ti). If OP = AND then
σ̂ ← σ2||σ3, if OP = OR then σ̂ ← σ2, σ̂ ← σ3, or σ̂ ← σ2||σ3, if OP = XOR
then σ̂ ← σ2 or σ̂ ← σ3figure.1.2 illustrates the pattern for a statically assigned
workflow. Here, the workflow manager computes a signature σ0 on a sequence
of (sets of) public keys PK together with the respective split/join operations.
Then, for each task, (one of) the authorized agent(s) can sign the respective
report using its secret key ski corresponding to the public key pki in PK. To be

4 When following the paradigm in Figure 2Pattern for statically assigned workflows.
The tuples (ri, σi) denote the task reports corresponding to Ai(ti). If OP = AND
then σ̂ ← σ2||σ3, if OP = OR then σ̂ ← σ2, σ̂ ← σ3, or σ̂ ← σ2||σ3, if OP = XOR
then σ̂ ← σ2 or σ̂ ← σ3figure.1.2, the workflow manager is the delegator, whereas
the agents are the delegatees. In contrast, following the paradigm in Figure 3Pat-
tern for dynamically assigned workflows. The tuples (ri, σi) denote the task reports
corresponding to Ai(ti). For simplicity, we omit split/join (cf. Figure 2Pattern for
statically assigned workflows. The tuples (ri, σi) denote the task reports correspond-
ing to Ai(ti). If OP = AND then σ̂ ← σ2||σ3, if OP = OR then σ̂ ← σ2, σ̂ ← σ3, or
σ̂ ← σ2||σ3, if OP = XOR then σ̂ ← σ2 or σ̂ ← σ3figure.1.2)figure.1.3, agents act as
both, delegatees and delegators, while only the first delegation is performed by the
workflow manager.

Prismacloud Deliverable D5.9

62 of 100

Workflow manager (WM): setup workflow W = ({t1, t2, t3, t4}, {(t1, t2), (t1, t3), (t2, t4), (t3, t4)})
PK = pk1||OP||{pk2j}

2
j=1||pk3, σ0 ← Sign(PK, skWM)

Task 1: A1(t1)

r1, σ1 ← Sign(r1||σ0, sk1) OP

Task 2: A2(t2)

r2, σ2 ← Sign(r2||σ1, sk2)

Task 3: A3(t3)

r3, σ3 ← Sign(r3||σ1, sk3)

Task 4: A4(t4)

r4, σ4 ← Sign(r4||σ̂, sk1)

PK, σ0

PK, σ0

PK, σ0

PK, σ0

Setup

OP AND, OR, or XOR

Fig. 2. Pattern for statically assigned workflows. The tuples (ri, σi) denote the task
reports corresponding to Ai(ti). If OP = AND then σ̂ ← σ2||σ3, if OP = OR then
σ̂ ← σ2, σ̂ ← σ3, or σ̂ ← σ2||σ3, if OP = XOR then σ̂ ← σ2 or σ̂ ← σ3.

able to reconstruct the order of the task executions, agent Aj also includes the
signature(s) of the agent(s) executing the preceding tasks in its signature σi.

Dynamic assignment. Figure 3Pattern for dynamically assigned workflows.
The tuples (ri, σi) denote the task reports corresponding to Ai(ti). For simplic-
ity, we omit split/join (cf. Figure 2Pattern for statically assigned workflows. The
tuples (ri, σi) denote the task reports corresponding to Ai(ti). If OP = AND then
σ̂ ← σ2||σ3, if OP = OR then σ̂ ← σ2, σ̂ ← σ3, or σ̂ ← σ2||σ3, if OP = XOR
then σ̂ ← σ2 or σ̂ ← σ3figure.1.2)figure.1.3 describes the pattern for dynami-
cally assigned workflows. In this approach, the workflow manager only delegates
to the first agent within the workflow and the agents can further delegate the
execution rights for subsequent tasks to subsequent agents.

Workflow manager (WM): setup workflow W = ({t1, t2, t3}, {(t1, t2), (t2, t3)})
PK = pk1, σ0 ← Sign(PK, skWM)

Agent 1: A1(t1)

r1, σ1 ← Sign(r1||pk2||σ0, sk1)

Agent 2: A2(t2)

r2, σ2 ← Sign(r2||pk3||σ1, sk2)

Agent 3: A3(t3)

r3, σ3 ← Sign(r3||σ2, sk3)

PK, σ0

Setup

Fig. 3. Pattern for dynamically assigned workflows. The tuples (ri, σi) denote the task
reports corresponding to Ai(ti). For simplicity, we omit split/join (cf. Figure 2Pattern
for statically assigned workflows. The tuples (ri, σi) denote the task reports correspond-
ing to Ai(ti). If OP = AND then σ̂ ← σ2||σ3, if OP = OR then σ̂ ← σ2, σ̂ ← σ3, or
σ̂ ← σ2||σ3, if OP = XOR then σ̂ ← σ2 or σ̂ ← σ3figure.1.2).

Prismacloud Deliverable D5.9

63 of 100

3.2 Structuring Task Reports

Orthogonal to the requirement to ensure logical relations among tasks, it might
also be interesting to automatically verify certain constraints regarding particu-
lar decisions upon execution of a task ti. For instance, it would be convenient to
predefine certain sets of possible actions of an agent per task. As a simple real-
ization one can think of a form containing several multiple-choice fields, where
each multiple-choice field corresponds to a subtask of a specific task in a work-
flow. Then, an application monitoring reports can easily define constraints in

Subtask 1.1

Option A ∨
Subtask 1.2

Option C ∨
Option A

Option B

Option C

Subtask 1.3

Option C ∨

Fig. 4. A simple task report for a task t1 = (t1.1, t1.2, t1.3), composed of three multiple
choice elements.

the fashion of: if Option A was chosen in Subtask 1.1 and Option B was chosen
in Subtask 1.2 then issue a warning. If required, this can easily be extended to
arbitrarily complex forms per task.

Adding a structure to the task reports, suggests to introduce the following
additional requirements.

Requirement 6. It is possible to predefine the structure of task reports.

Besides addressing the structure of the report, allowing the delegatee to predefine
sets of admissible choices for certain parts of task reports would help to improve
the quality and help to automate the processing.

Requirement 7. It is possible to predefine sets of admissible choices for certain
fields in the task report.

However, such detailed workflow reports also impose privacy requirements, since
it is crucial that business internals remain confidential, e.g., when reports are
revealed for auditing purposes.

Requirement 8. Task reports do not reveal additional information that is avail-
able to the delegator and/or the execution agent (e.g., the unused choices of the
predefined sets of admissible replacements).

4 Instantiations

Using standard digital signatures, one can straightforwardly instantiate the pat-
terns in Figure 2Pattern for statically assigned workflows. The tuples (ri, σi)
denote the task reports corresponding to Ai(ti). If OP = AND then σ̂ ← σ2||σ3,

Prismacloud Deliverable D5.9

64 of 100

if OP = OR then σ̂ ← σ2, σ̂ ← σ3, or σ̂ ← σ2||σ3, if OP = XOR then σ̂ ← σ2 or
σ̂ ← σ3figure.1.2 and Figure 3Pattern for dynamically assigned workflows. The
tuples (ri, σi) denote the task reports corresponding to Ai(ti). For simplicity, we
omit split/join (cf. Figure 2Pattern for statically assigned workflows. The tu-
ples (ri, σi) denote the task reports corresponding to Ai(ti). If OP = AND then
σ̂ ← σ2||σ3, if OP = OR then σ̂ ← σ2, σ̂ ← σ3, or σ̂ ← σ2||σ3, if OP = XOR then
σ̂ ← σ2 or σ̂ ← σ3figure.1.2)figure.1.3. Subsequently, we revisit the instantiation
of these patterns with other variants of digital signatures. We stress that we
provide algorithmic descriptions for the schemes as we believe that this makes
the presentation unambiguous and clearer than any informal textual description.

Append-only Signatures. Append only signatures [32] allow to publicly ex-
tend signed messages and to update the signature correspondingly. An append
only signature scheme (AOS) is a tuple of efficient algorithms (Setup,Append,Ver-
ify), which are defined as follows:

Setup : On input of a security parameter κ, this algorithm outputs a keypair
(sk, pk), where sk constitutes the signature on the empty message.

Append : On input of a public key pk, a signature σn−1 on a message (m1, . . . ,
mn−1), and a message mn, this algorithm outputs a signature σn on the
message (m1, . . . ,mn).

Verify : On input of a public key pk, a signature σ and a message M = (m1, . . . ,
mn), this algorithm outputs a bit b ∈ {0, 1}, indicating whether σ is valid.

For security, AOS are required to provide AOS-unforgeability under chosen mes-
sage attacks. Informally this means that the only way of creating a valid signature
of length n on a message M = (m1, . . . ,mn) is to extend a valid signature on
message M ′ = (m1, . . . ,mn−1).

Application to Workflows: Using append-only signatures, the workflow manager
creates a signature on the empty message and each agent can append its doc-
umentation. Due to their public-append capabilities, AOS are suited for unau-
thorized delegations, which only ensure the integrity of the signed reports.

Redactable Signatures. Informally, redactable signatures [31, 38, 48] allow to
sign documents, where certain predefined parts can later be blacked out (or
cloaked) without signer interaction and without invalidating the signature. A
redactable signature scheme (RSS) is a tuple of efficient algorithms (KeyGen,
Sign,Verify,Redact), which are defined as follows (using the notation of [19]):

KeyGen : On input of a security parameter κ, this algorithm outputs a key-pair
(sk, pk).

Sign : On input of a secret key sk, a message M and admissible redactions ADM,
this algorithm returns a message-signature pair (M,σ) (where ADM can be
derived from σ).

Verify : On input of a public key pk, a message M and a signature σ, this algo-
rithm outputs a bit b ∈ {0, 1}, indicating the validity of σ.

Prismacloud Deliverable D5.9

65 of 100

Redact : This algorithm takes a public key pk, a signature σ, a message M
and modification instructions MOD, computes an updated signature σ′ and
outputs an updated message signature pair (MOD(M), σ′).

Essentially the redaction can be done by everyone, meaning that (1) the entity
that performs the redaction is not accountable for the changes and (2) one is
only able to black out certain document parts. For security, redactable signatures
are required to be unforgeable and private.

Unforgeability captures the infeasibility to output a valid message signature pair
(M,σ) without knowing sk, unless (M,σ) was obtained by redaction.

Privacy requires it to be infeasible for every efficient adversary to reconstruct
the redacted message parts, given the redacted message and its signature.

See [19] for a formal security model. Besides these properties, the security model
for RSS has been refined and extended several times. Firstly, [45] introduced
the notion of accountability, which requires that signers and redactors can be
held accountable for their signatures/redactions. Secondly, [45] and [14] inde-
pendently introduced unlinkability for RSS as an even stronger privacy notion.
Unlinkability essentially requires multiple redactions of the same document to
be unlinkable. We, however, note that we do not further consider unlinkability
here, since privacy already provides the required security guarantees in our con-
text. We also mention that redactable signatures are related to the more general
framework of P -homomorphic signatures [1].

Application to Workflows: In context of workflows, RSS can be used in two
different ways:

(1) One uses RSS in the same way as conventional DSS. Then, when it is required
to publish reports (e.g., for auditing purposes) it can be useful to redact
certain confidential parts of the reports.

(2) Provided that all potential reports are known prior to designating a task
to an agent, one could enumerate all variants of the reports and sign this
list using an RSS. The agent then simply redacts—thus removes—all reports
that are not required. While conventional RSS do not provide accountability
in this setting, accountable RSS (ARSS) [45] can be used to additionally
provide accountability.

Sanitizable Signatures. Sanitizable signatures [3, 9–11, 13, 12, 46] split mes-
sages in fixed and variable message parts and allow to issue signatures on them.
A designated party (the sanitizer) is then able to modify the variable parts of the
message without invalidating the signature. A sanitizable signature scheme (SSS)
is a tuple of efficient algorithms (KeyGensig,KeyGensan,Sign,Sanit,Verify,Proof,
Judge). Subsequently, we recall the definitions from [9]:

KeyGensig : On input of a security parameter κ, this algorithm outputs a signer
key-pair (sksig, pksig).

Prismacloud Deliverable D5.9

66 of 100

KeyGensan : On input of a security parameter κ, this algorithm outputs a sani-
tizer key-pair (sksan, pksan).

Sign : On input of a message M , corresponding admissible modifications ADM,
the keypair of the signer (sksig, pksig), as well as the verification key of the
sanitizer pksan, this algorithm outputs a message-signature pair (M,σ), where
it is assumed that ADM can be reconstructed from σ.

Sanit : On input of a valid message-signature pair (M,σ), modification instruc-
tions MOD, some auxiliary information aux, the verification key of the signer
pksig and the secret key of the sanitizer sksan, this algorithm outputs an up-
dated message signature pair (MOD(m), σ′) and ⊥ if the modification in-
structions are incompatible with ADM.

Verify : On input of a message-signature pair (M,σ) and the verification keys of
the signer pksig and the sanitizer pksan, this algorithm outputs a bit b ∈ {0, 1}
indicating whether σ is a valid signature on M .

Proof : On input of a message-signature pair (M,σ), q message-signature pairs
(Mj , σj)

q
j=1 created by the signer, the keypair (sksig, pksig) of the signer and

the verification key of the sanitizer pksan, this algorithm outputs a proof π.
Judge : On input of a message-signature pair (M,σ), the verification keys of the

signer pksig and the sanitizer pksan, and a valid a proof π, this algorithm
outputs a bit b ∈ {sig, san}, indicating whether the respective signature
was created by the signer or the sanitizer.

Subsequently, we informally discuss the security properties of sanitizable signa-
tures (introduced in [3] and formalized in [9]):

Unforgeability requires that only honest signers and sanitizers are able to pro-
duce valid signatures.

Immutability requires that malicious sanitizers are not able to modify fixed mes-
sage parts.

Transparency requires that no one (except the signer and the sanitizer) can
distinguish signatures of the signer from signatures of the sanitizer.

Privacy requires that no one (except the signer and the sanitizer) can recover
sanitized information.

Signer-/Sanitizer-accountability Requires that no signer can falsely accuse a san-
itizer of having created a certain signature and vice versa.

The above properties have seen some refinement and gradual extension since
their formalization in [9], e.g., by [33, 25, 16, 13, 12, 45, 20].

In [33], among others, an extension that additionally allows to define sets
of admissible replacements per message block (LimitSet) was introduced and
later formalized in [15] (henceforth called extended sanitizable signatures or
ESSS). Their formalization, however, does not require the sets of admissible
modifications to remain concealed upon verification, and, thus, does not define
privacy in the original sense. Thus, [20] introduced the notion of strong privacy,
that additionally covers this requirement. In [20], it is also shown that ESSS
providing strong privacy can be black-box constructed from every secure SSS in
the model of [9] and indistinguishable accumulators [18].

Prismacloud Deliverable D5.9

67 of 100

Orthogonal to that, [13] discusses that accountability can be modeled in
two ways: non-interactive or interactive. The model presented above is tailored
to interactive (non-public) accountability. In contrast, non-interactive (public)
accountability requires that Judge works correctly on an empty proof π.5 We
emphasize that non-interactive accountability might be helpful in workflows,
where the original signer can not be involved for certain reasons, e.g., efficiency.

Application to Workflows: By definition, SSS include a delegation mechanism,
i.e., a signer grants a sanitizer permission to modify certain parts of a signed
message without invalidating the signature. Thus, using this primitive, one can
not only pre-specify the execution agent, but also the structure of the report.6 In
other words, SSS allow to split the report into several fields; then, according to
the pre-defined workflow, one specifies which agent (i.e., by specifying the sani-
tizer) is allowed to put arbitrary content into certain fields of the report. In ad-
dition, SSS provide transparency, which is useful if it is required to hide whether
a certain task was outsourced or not. In case of a dispute, the {Proof, Judge}
algorithms still guarantee accountability. In case the additional level of privacy
given by transparency is not needed, one can use non-interactively (publicly)
accountable SSS, e.g., [13, 12].

ESSS [15]: Extended sanitizable signatures, as defined in [15], extend SSS by the
possibility to limit the admissible modifications per message block to sets of
allowed messages. This allows for an even more fine grained definition of the
report structure. However, the model of [15] does not require the unused
choices in the sets of admissible modifications to remain hidden upon veri-
fication. While this extension eases the automatic processing of reports, the
limited privacy features limit the practical applicability of this instantiation.

ESSS [20]: Extended sanitizable signatures, as defined in [20], fix the aforemen-
tioned privacy problems, which, in turn, extends their applicability to work-
flow documentation systems.

Proxy Signatures. Proxy signature (PS) schemes, introduced in [37] and for-
malized in [7] allow a delegator to delegate the signing rights for a certain message
space M to a proxy. A proxy can then produce signatures for messages m ∈M
on behalf of the delegator. Subsequently, we recall the definitions from [7]:

(D,P) : The originator and the proxy jointly compute a delegation for the mes-
sage spaceM as well as a proxy signing key skp. The originator runs D and
outputs the delegation σ computed using its signing key ski, whereas the
proxy verifies the delegation and obtains the proxy signing key skp, which
consists of its private signing key skj and the originators delegation.

Sign : This algorithm computes and outputs a proxy signature σP for message
m ∈M using the proxy signing key skp.

5 Note that this obviously contradicts transparency, meaning that no scheme can be
transparent and non-interactively accountable at the same time.

6 Using SSS supporting multiple sanitizers [16], one can even pre-specify multiple
possible agents for a single task.

Prismacloud Deliverable D5.9

68 of 100

Verify : This algorithm verifies whether proxy signature σP is a valid proxy sig-
nature for message m under pkj , delegated by pki. On success, this algorithm
outputs 1, and 0 otherwise.

ID : This algorithm outputs the identity j of the proxy, when given a proxy
signature σP .

For security, proxy signatures are required to be unforgeable, which informally
means that no one can produce valid signatures for messages m /∈ M and only
the designated proxy can produce valid signatures for m ∈ M. In [27], the
model was extended by introducing privacy, which essentially requires that—
upon verification of a signature σP on a message m ∈ M—the verifier learns
nothing about M (except that m ∈ M). Signatures secure in this model are
called warrant-hiding proxy signatures (WHPS). We note that proxy signatures
are one instantiation of the more general concept of functional signatures [5, 8].

Application to Workflows: Here, a delegator grants a proxy the signing rights for
messages out of a certain message space M. This delegation mechanism can be
used to predefine all possible reports and the executing agent only chooses the
suitable report. In addition, WHPS additionally provide privacy with respect to
the unused reports in the designated message space.

Blank Digital Signatures. Blank digital signatures, introduced in [26], allow
an originator O to define and sign forms (so-called templates T) consisting of
fixed and exchangeable (multiple-choice) elements. These forms can then be filled
in (instantiated) by a designated party (the proxy P). Upon verification, the ver-
ifier only learns the values chosen by the designated party. A blank digital signa-
ture scheme (BDSS) is a tuple of efficient algorithms (KeyGen,Sign,VerifyT, Inst,
VerifyI), which are introduced subsequently. Thereby, we assume that DSS sign-
ing keys for the originator (skO, pkO) and the proxy (skP, pkP) already exist.

KeyGen : On input of a security parameter κ and an upper bound for the tem-
plate size t, this algorithm outputs public parameters pp. We assume pp to
be an implicit input to all subsequent algorithms.

Sign : On input of a template T , the signing key of the originator skO and the
verification key of the proxy pkP, this algorithm outputs a template signature
σT and a secret instantiation key skTP for the proxy.

VerifyT : On input of a template T , a template signature σT , the instantiation
key of the proxy skTP and the public verification keys of the originator pkO
and the proxy pkP, this algorithm outputs a bit b ∈ {0, 1}, indicating whether
σT is valid.

Inst : On input of a template T , a template signature σT , an instance M, the
signing key skP and the instantiation key skTP of the proxy, this algorithm
outputs an instance signature σM on M if M is a valid instance of T and
⊥ otherwise.

VerifyI : On input of an instanceM, an instance signature σM and the verifica-
tion keys of the originator pkO and the proxy pkP, this algorithm outputs a
bit b ∈ {0, 1}, indicating whether σM is valid.

Prismacloud Deliverable D5.9

69 of 100

The security requirements for BDSS are (informally) defined as follows:

Unforgeability requires that only the honest originator and proxy can create
valid signatures.

Immutability requires that even malicious proxies cannot create instance signa-
tures for invalid instances M of T .

Privacy requires that no one (except the proxy and the originator) can recover
the unused choices for the exchangeable elements.

Application to Workflows: BDSS are—up to the missing transparency and ac-
countability properties—similar to ESSS in [20] and can, thus, be used for similar
purposes. We note that all known instantiations of BDSS [26, 17] provide public
accountability, since they require an explicit signature of the delegatee (proxy).

4.1 Comparison and Discussion

In Table 1Requirements covered by the respective instantiations. Legend: X . . . supported,
A . . . supported by ARSS [45], † . . . if scheme is transparenttable.1.1, we bring the
various possible instantiations discussed above into the context of the previously
defined requirements, where we exclude naive instantiations. Depending on the

Inst. R1 R2 R3 R4 R5 R6 R7 R8

DSS X X X X
AOS X X
RSS (1) X X X X X
RSS (2) X X A A† X X
SSS X X X X† X X
ESSS [15] X X X X† X X X
ESSS [20] X X X X† X X X X
PS X X X X
WHPS X X X X X
BDSS X X X X X X X

Table 1. Requirements covered by the respective instantiations. Legend:
X . . . supported, A . . . supported by ARSS [45], † . . . if scheme is transparent

used scheme, we can cover different subsets of previously posed requirements.
While choosing a concrete instantiation always depends on the requirements, we
note that ESSS and BDSS seem to be particularly well suited for the considered
applications. Note that—mainly due to the imposed overhead—we do not con-
sider naive solutions such as achieving Requirement 6 and 7 by enumerating all
possible task reports. We again stress that the instantiations discussed in this
paper are very simple and only make use of standard cryptographic primitives
with multiple efficient instantiations. Thereby, we only require to assume the
existence of some public key authority.

Prismacloud Deliverable D5.9

70 of 100

Outlook. In this paper we have discussed potential solutions for authentic and
accountable, yet privacy maintaining documentation of outsourced workflows.
While we, thereby, followed a rather high-level and informal approach, it would
be interesting to model the desired security properties more formally (as for
instance done in [36] for cloud provenance). Furthermore, it would be interesting
to evaluate the practical value of our proposed solutions in a real world setting.
Finally, we note that it seems to be straight forward to extend our approach
by cryptographic access control solutions (e.g., [21, 22]) to restrict the access to
task reports. We leave these points as future work.

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. J. Cryptology 28(2) (2015)

2. Al-Riyami, S.S., Malone-Lee, J., Smart, N.P.: Escrow-free encryption supporting
cryptographic workflow. Int. J. Inf. Sec. 5(4) (2006)

3. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
ESORICS 2005. LNCS, vol. 3679

4. Bagga, W., Molva, R.: Policy-based cryptography and applications. In: FC 2005
5. Bellare, M., Fuchsbauer, G.: Policy-Based Signatures. In: PKC 2014. LNCS, vol.

8383
6. Bier, C.: How usage control and provenance tracking get together - a data protec-

tion perspective. In: IEEE Security and Privacy Workshops (SPW) 2013. IEEE
7. Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for del-

egation of signing rights. J. Cryptology 25(1) (2012)
8. Boyle, E., Goldwasser, S., Ivan, I.: Functional Signatures and Pseudorandom Func-

tions. In: PKC 2014. LNCS, vol. 8383
9. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,

Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: PKC 2009.
LNCS, vol. 5443

10. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Sanitizable signatures: How
to partially delegate control for authenticated data. In: BIOSIG 2009. LNI, vol.
155

11. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable
signatures. In: PKC 2010. LNCS, vol. 6056

12. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable
signatures without group signatures. In: EuroPKI 2013. LNCS, vol. 8341

13. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for
sanitizable signatures. In: EuroPKI 2012. LNCS, vol. 7868

14. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable &
modular anonymous credentials: Definitions and practical constructions. In: ASI-
ACRYPT 2015. LNCS, vol. 9453

15. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: CT-RSA
2010. LNCS, vol. 5985

16. Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several signers
and sanitizers. In: AFRICACRYPT 2012. LNCS, vol. 7374

17. Derler, D., Hanser, C., Slamanig, D.: Privacy-enhancing proxy signatures from
non-interactive anonymous credentials. In: DBSec 2014. LNCS, vol. 8566

Prismacloud Deliverable D5.9

71 of 100

18. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: CT-RSA 2015. LNCS, vol.
9048

19. Derler, D., Pöhls, H., Samelin, K., Slamanig, D.: A general framework for
redactable signatures and new constructions. In: ICISC 2015. LNCS, vol. 9558

20. Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable signatures
and a black-box construction of strongly private schemes. In: ProvSec 2015. LNCS,
vol. 9451

21. Ferrara, A.L., Fuchsbauer, G., Liu, B., Warinschi, B.: Policy privacy in crypto-
graphic access control. In: CSF 2015. IEEE

22. Ferrara, A.L., Fuchsbauer, G., Warinschi, B.: Cryptographically enforced RBAC.
In: CSF 2013. IEEE

23. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks:
A survey. Computing in Science & Engineering 10(3) (2008)

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2) (1988)

25. Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In:
InsCrypt 2010. LNCS, vol. 6584

26. Hanser, C., Slamanig, D.: Blank digital signatures. In: AsiaCCS 2013. ACM
27. Hanser, C., Slamanig, D.: Warrant-hiding delegation-by-certificate proxy signature

schemes. In: INDOCRYPT 2013. LNCS, vol. 8250
28. Herkenhöner, R., Jensen, M., Pöhls, H.C., de Meer, H.: Towards automated pro-

cessing of the right of access in inter-organizational web service compositions. In:
WSBPS 2010. IEEE

29. ISO/IEC 19510: Information technology – Object Management Group Business
Process Model and Notation (2013)

30. Jablonski, S.: On the complementarity of workflow management and business pro-
cess modeling. SIGOIS Bull. 16(1) (1995)

31. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes.
In: CT-RSA 2002. LNCS, vol. 2271

32. Kiltz, E., Mityagin, A., Panjwani, S., Raghavan, B.: Append-only signatures. In:
ICALP 2005. LNCS, vol. 3580

33. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: ICISC 2006. LNCS,
vol. 4296

34. Lim, H.W., Kerschbaum, F., Wang, H.: Workflow signatures for business process
compliance. IEEE Trans. Dependable Sec. Comput. 9(5) (2012)

35. Lim, H.W., Paterson, K.G.: Multi-key hierarchical identity-based signatures. In:
IMACC 2007. LNCS, vol. 4887

36. Lu, R., Lin, X., Liang, X., Shen, X.S.: Secure provenance: the essential of bread
and butter of data forensics in cloud computing. In: ASIACCS 2010. ACM

37. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing op-
eration. In: CCS 1996. ACM

38. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka,
S., Imai, H.: Digitally signed document sanitizing scheme with disclosure condi-
tion control. IEICE Trans. on Fundamentals of Electronics, Communications and
Computer Sciences 88-A(1) (2005)

39. Montagut, F., Molva, R.: Enforcing integrity of execution in distributed workflow
management systems. In: SCC 2007. IEEE

40. Montagut, F., Molva, R.: Traceability and integrity of execution in distributed
workflow management systems. In: ESORICS 2007. LNCS, vol. 4734

Prismacloud Deliverable D5.9

72 of 100

41. Moreau, L., Groth, P., Miles, S., Vazquez-Salceda, J., Ibbotson, J., Jiang, S.,
Munroe, S., Rana, O., Schreiber, A., Tan, V., et al.: The provenance of electronic
data. Communications of the ACM 51(4) (2008)

42. Moreau, L., Ludäscher, B., Altintas, I., Barga, R.S., Bowers, S., Callahan, S.,
Chin, G., Clifford, B., Cohen, S., Cohen-Boulakia, S., et al.: Special issue: the first
provenance challenge. Concurrency and Computation: Practice and Experience
20(5) (2008)

43. Paterson, K.: Cryptography from pairings: A snapshot of current research. Infor-
mation Security Technical Report 7(3) (2002)

44. Pearson, S., Tountopoulos, V., Catteddu, D., Südholt, M., Molva, R., Reich, C.,
Fischer-Hübner, S., Millard, C., Lotz, V., Jaatun, M.G., Leenes, R., Rong, C.,
Lopez, J.: Accountability for cloud and other future internet services. In: Cloud-
Com 2012. IEEE

45. Pöhls, H.C., Samelin, K.: Accountable redactable signatures. In: ARES 2015. IEEE
46. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in XML signature -

performance, mixing properties, and revisiting the property of transparency. In:
ACNS 2011. LNCS, vol. 6715

47. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
ACM Sigmod Record 34(3) (2005)

48. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: ICISC 2001.
LNCS, vol. 2288

Prismacloud Deliverable D5.9

73 of 100

This is the full version of a paper which appears in Cryptology and Network
Security - 15th International Conference, CANS 2016, Milan, Italy, November
14-16, 2016. Proceedings, Sara Foresti and Giuseppe Persiano Eds., Springer,
LNCS 10052, pages 211–227, 10.1007/978-3-319-48965-0 13.

Signer-Anonymous Designated-Verifier
Redactable Signatures for Cloud-Based

Data Sharing

David Derler1,‡, Stephan Krenn2,‡,‖, and Daniel Slamanig1,‡

1 IAIK, Graz University of Technology, Graz, Austria
{david.derler|daniel.slamanig}@tugraz.at

2 AIT Austrian Institute of Technology GmbH, Vienna, Austria
stephan.krenn@ait.ac.at

Abstract. Redactable signature schemes allow to black out predefined
parts of a signed message without affecting the validity of the signa-
ture, and are therefore an important building block in privacy-enhancing
cryptography. However, a second look shows, that for many practical ap-
plications, they cannot be used in their vanilla form. On the one hand,
already the identity of the signer may often reveal sensitive information
to the receiver of a redacted message; on the other hand, if data leaks or
is sold, everyone getting hold of (redacted versions of) a signed message
will be convinced of its authenticity.

We overcome these issues by providing a definitional framework and
practically efficient instantiations of so called signer-anonymous desig-
nated-verifier redactable signatures (AD-RS). As a byproduct we also
obtain the first group redactable signatures, which may be of indepen-
dent interest. AD-RS are motivated by a real world use-case in the field
of health care and complement existing health information sharing plat-
forms with additional important privacy features. Moreover, our results
are not limited to the proposed application, but can also be directly ap-
plied to various other contexts such as notary authorities or e-government
services.

1 Introduction

Digitalization of data and processes as well as the use of promising IT-trends such
as cloud computing is prevalent, steadily increasing and meanwhile outreaches
even sensitive fields such as the health care sector.1 Given the sensitivity of the
involved data and the high demands in data correctness and quality, the health
care domain is a prime example for the beneficial application of cryptographic
means such as encryption and digital signatures. This work is dedicated to the
development of a cryptographically enhanced solution for a real world hospital,
which is currently planning to complement its existing information sharing sys-
tem for electronic patient data with additional privacy features. The overall idea

‡ Supported by EU H2020 project Prismacloud, grant agreement n◦644962.
‖ Supported by EU H2020 project Credential, grant agreement n◦653454.
1 See e.g., www.healthcaredive.com/news/407746/

Prismacloud Deliverable D5.9

74 of 100

of the system is to grant patients access to all their medical records via a cloud-
based platform. The patients are then able to use this as a central hub to dis-
tribute their documents to different stakeholders, e.g., to request reimbursement
by the insurance, or to forward (parts of) the documents to the family doctor
for further treatment. While means for access control and data confidentiality
are already in place, the system should be complemented by strong authenticity
guarantees. At the same time a high degree of privacy should be maintained, i.e.,
by allowing the patients, on a fine-granular basis, to decide which parts of which
document should be visible to which party. For instance, the family doctor might
not need to learn the precise costs of a treatment; similarly a medical research
laboratory should not learn the patients’ identities.

From a research point of view, one motivation behind this work is to show
how rather complex real world scenarios with conflicting interests and strong se-
curity and privacy requirements can be elegantly and securely realized by means
of rigorous cryptographic design and analysis. More importantly, we can indeed
come up with provably secure and practical solutions being well suited for real
world use. Now, we discuss the motivation for our design.

Redactable Signatures. A trivial solution for the above problem would be to let
the hospital cloud create a fresh signature on the information to be revealed
every time the user wishes to forward authentic subsets of a document to other
parties. However, this is not satisfactory as it would require strong trust assump-
tions into the cloud: one could not efficiently guarantee that the signed data has
not been altered over time by the cloud or by a malicious intruder. It is there-
fore preferable to use redactable signatures (RS). These are signature schemes
that allow to black out (redact) predefined parts of a signed message while pre-
serving the validity of the signature, thereby guaranteeing the authenticity of
the redacted message. That is, it is not necessary to let the cloud attest the
authenticity of the forwarded data, as the signature on the redacted document
can be extracted from the doctor’s signature on the original document without
requiring the doctor’s secret signing key or further interaction with the doctor.

Designated Verifiers. Unfortunately, using redactable signatures in their vanilla
form in our scenario would lead to severe privacy problems, i.e., everyone getting
hold of a signed document would be convinced of its authenticity. In such a case,
for instance, an employer who gets hold of a signed health record of an employee,
might reliably learn the employee’s disease, who, in further consequence, might
get dismissed. What is therefore needed is a designated verifier for each redacted
version of a document. That is, when redacting a document, the patient should
be able to define the intended receiver. Then, while everybody can check the
validity of a leaked document, only the designated verifier is convinced about its
authenticity. This can be achieved by constructing the schemes in a way that the
designated verifier can fake indistinguishable signatures on its own. Moreover,
the public verifiability property might as well be a motivation for designated ver-
ifiers to not leak/sell documents, as this reduces the circle of possible suspects
to the data owner and the designated verifier.

Prismacloud Deliverable D5.9

75 of 100

Group Signatures. Another problem of RS is that they only support a single
signer. However, a hospital potentially employing hundreds of doctors will not
use a single signing key that is shared by all its employees. By doing so, the
identity of the signing doctor could not be revealed in case of a dispute, e.g.,
after a malpractice. However, using different keys for different doctors poses a
privacy risk again. For instance, if the document was signed using an oncologist’s
key, one could infer sensitive information about the disease—even though the
diagnosis was blacked out. What is therefore needed are features known from
group signatures, where towards the verifier the doctor’s identity remains hidden
within the set of doctors in the hospital, while re-identification is still possible
by a dedicated entity.

Contribution. The properties we need for our scenario are contributed by three
distinct cryptographic concepts and what we actually need can be considered as
a signer-anonymous designated-verifier redactable signature scheme. However,
while a lot of existing work studies the different concepts in isolation, there is
no work which aims at combining them in a way to profit from a combination of
their individual properties. Trying to obtain this by simply combining them in
an ad-hoc fashion, however, is dangerous. It is well known that the ad-hoc com-
bination of cryptographic primitives to larger systems is often problematic (as
subtle issues often remain hidden when omitting formal analysis) and security
breaches resulting from such approaches are often seen in practice. Unlike follow-
ing such an ad-hoc approach, we follow a rigorous approach and formally model
what is required by the use-case, introduce a comprehensive security model and
propose two (semi-)black-box constructions that are provably secure within our
model. While such a (semi-)black-box construction is naturally interesting from
a theoretical point of view, our second construction is also entirely practical and
thus also well suited to be used within the planned system. Finally, as a con-
tribution which may be of independent interest, we also obtain the first group
redactable signatures as a byproduct of our definitional framework.

Technical Overview. Our constructions provably achieve the desired functional-
ity by means of a two-tier signature approach: a message is signed using a freshly
generated RS key pair where the corresponding public key of this “one-time RS”
is certified using a group signature. For the designated verifier feature, we follow
two different approaches. Firstly, we follow the näıve approach and use a disjunc-
tive non-interactive proof of knowledge which either demonstrates knowledge of
a valid RS signature on the message, or it demonstrates knowledge of a valid
signature of the designated verifier on the same message. While this approach is
very generic, its efficiency largely depends on the complexity to prove knowledge
of an RS signature. To this end, we exploit key-homomorphic signatures, which
we introduce and which seem to be of independent interest. In particular, we
use the observation that a large class of RS can easily be turned into RS admit-
ting the required key-homomorphism, to obtain a practical construction. More
precisely, besides conventional group signatures and conventional redactable sig-
natures, our approach only requires to prove a single statement demonstrating
knowledge of the relation between two RS keys or demonstrating knowledge of

Prismacloud Deliverable D5.9

76 of 100

the designated verifier’s secret key. For instance, in the discrete logarithm setting
when instantiating this proof using Fiat-Shamir transformed [FS86] Σ-protocols,
they are highly efficient as they only require two group exponentiations.

Related Work. Redactable signature schemes have been independently in-
troduced in [JMSW02] and [SBZ01]. Although such schemes suffer from the
aforementioned problems, we can use them as an important building block. In
particular, we will rely on the general framework for such signatures as pre-
sented in [DPSS15]. Besides that, redactable signatures with an unlinkability
property have been introduced in [CDHK15, PS15].2 Unfortunately, apart from
lacking practical efficiency, even unlinkable redactable signatures are not useful
to achieve the desired designated verifier functionality. There is a large body of
work on signatures with designated verifiers, which are discussed subsequently.
However, none of the approaches considers selective disclosure via redaction or
a group signing feature.

In designated verifier (DV) signatures (or proofs) [JSI96], a signature pro-
duced by a signer can only be validated by a single user who is designated by
the signer during the signing process (cf. [LWB05] for a refined security model).
Designation can only be performed by the signer and verification requires the
designated verifier’s secret. Thus, this concept is not directly applicable to our
setting. In [JSI96] also the by now well known “OR trick” was introduced as a
DV construction paradigm.

Undeniable signatures [CA89] are signatures that can not be verified without
the signer’s cooperation and the signer can either prove that a signature is valid
or invalid. This is not suitable for us as this is an interactive process.

Designated confirmer signatures [Cha94] introduce a third entity besides the
signer and the verifier called designated confirmer. This party, given a signature,
has the ability to privately verify it as well as to convince anyone of its validity
or invalidity. Additionally, the designated confirmer can convert a designated
confirmer signature into an ordinary signature that is then publicly verifiable.
This is not suitable for our scenario, as it is exactly the opposite of what we
require, i.e., here the signature for the confirmer is not publicly verifiable, but
the confirmer can always output publicly verifiable versions of this signature.

Another concept, which is closer to the designation functionality that we re-
quire, are universal designated verifier (UDV) signatures introduced in [SBWP03].
They are similar to designated verifier signatures, but universal in the sense that
any party who is given a publicly verifiable signature from the signer can des-
ignate the signature to any designated verifier by using the verifiers public key.
Then, the designated verifier can verify that the message was signed by the
signer, but is unable to convince anyone else of this fact. Like with ordinary DV
signatures, UDV signatures also require the designated verifier’s secret key for
verification. There are some generic results for UDV signatures. In [Ver06] it was
shown how to convert various pairing-based signature schemes into UDV signa-
tures. In [SS08] it was shown how to convert a large class of signature schemes

2 Similar to the related concept of unlinkable sanitizable signatures [BFLS10, BPS13,
FKM+16, LZCS16].

Prismacloud Deliverable D5.9

77 of 100

into UDV signatures. Some ideas in our second construction are conceptually
related to this generic approach. However, as we only require to prove relations
among public keys, our approach is more tailored to efficiency.

2 Preliminaries

We denote algorithms by sans-serif letters, e.g., A,B. All algorithms are assumed
to return a special symbol ⊥ on error. By y ← A(x), we denote that y is assigned
the output of the potentially probabilistic algorithm A on input x and fresh ran-
dom coins. Similarly, y←R S means that y was sampled uniformly at random
from a set S. We let [n] := {1, . . . , n}. We write Pr[Ω : E] to denote the proba-
bility of an event E over the probability space Ω. We use C to denote challengers
of security experiments, and Cκ to make the security parameter explicit.

A function ε(·) : N→ R≥0 is called negligible, iff it vanishes faster than every
inverse polynomial, i.e., ∀ k : ∃ nk : ∀ n > nk : ε(n) < n−k.

Followingly, we recap required cryptographic building blocks. Due to space
constraints we omit formal definitions for well known primitives such as a digital
signature scheme Σ = (KeyGen,Sign,Verify) and a (non-interactive) proof system
Π = (Setup,Proof,Verify) here, and present them in Appendix A.

Redactable Signatures. Below, we recall the generalized model for redactable
signatures from [DPSS15], which builds up on [BBD+10]. As done in [DPSS15],
we do not make the structure of the message explicit. That is, we assume that
the message m to be signed is some arbitrarily structured data. We use ADM to
denote a data structure encoding the admissible redactions of some messeage m
and we use MOD to denote a data structure containing modification instructions
for some message. We use m̊ �

ADM

m to denote that a message m̊ is derivable from
a message m under ADM and m̊←−MOD m to denote that m̊ is obtained by applying
MOD to m. Likewise, we use ˚ADM←−MOD

ADM to denote the derivation of ˚ADM from
ADM with respect to MOD. We use ADM � m to denote that ADM matches m, and
MOD � ADM to denote that MOD matches ADM.

Definition 1. An RS is a tuple (KeyGen,Sign,Verify,Redact) of PPT algorithms,
which are defined as follows:

KeyGen(1κ) : Takes a security parameter κ as input and outputs a keypair (sk, pk).
Sign(sk,m, ADM) : Takes a secret key sk, a message m and admissible modifica-

tions ADM as input, and outputs a message-signature pair (m, σ) together with
some auxiliary redaction information RED.3

Verify(pk,m, σ) : Takes a public key pk, a message m, and a signature σ as input,
and outputs a bit b.

Redact(pk,m, σ,MOD, RED) : Takes a public key pk, a message m, a valid signature
σ, modification instructions MOD, and auxiliary redaction information RED

as input. It returns a redacted message-signature pair (m̊, σ̊) and an updated
auxiliary redaction information R̊ED.

3 As it is common for RS, we assume that ADM can always be recovered from (m, σ).

Prismacloud Deliverable D5.9

78 of 100

While we omit correctness, we recall the remaining RS security definitions below.

Definition 2 (Unforgeability). An RS is unforgeable, if for all PPT adver-
saries A there exists a negligible function ε(·) such that

Pr

[
(sk, pk)← KeyGen(1κ),
(m?, σ?)← ASign(sk,·,·)(pk)

:
Verify(pk,m?, σ?) = 1 ∧

@ (m, ADM) ∈ QSign : m? �
ADM

m

]
≤ ε(κ),

where the environment keeps track of the queries to the signing oracle via QSign.

Definition 3 (Privacy). An RS is private, if for all PPT adversaries A there
exists a negligible function ε(·) such that

Pr




(sk, pk)← KeyGen(1κ), b←R {0, 1},
O ← {Sign(sk, ·, ·), LoRRedact(sk, pk, ·, ·, b)},
b? ← AO(pk)

: b = b?


 ≤ 1/2 + ε(κ),

where LoRRedact is defined as follows:

LoRRedact(sk, pk, (m0, ADM0,MOD0), (m1, ADM1,MOD1), b):
1: Compute ((mc, σc), REDc)← Sign(sk,mc, ADMc) for c ∈ {0, 1}.
2: Let ((m̊c, σ̊c), R̊EDc)← Redact(pk, σc,mc,MODc, REDc) for c ∈ {0, 1}.
3: If m̊0 6= m̊1 ∨ ˚ADM0 6= ˚ADM1, return ⊥.
4: Return (m̊b, σ̊b).

Here, the admissible modifications ˚ADM0 and ˚ADM1 corresponding to the redacted
messages are implicitly defined by (and recoverable from) the tuples (m̊0, σ̊0) and
(m̊1, σ̊1) and the oracle returns ⊥ if any of the algorithms returns ⊥.

We call an RS secure, if it is correct, unforgeable, and private.

Group Signatures. Subsequently, we recall the established model for static
group signatures from [BMW03]. Again, we slightly adapt the notation to ours.

Definition 4. A group signature scheme GS is a tuple (KeyGen,Sign,Verify,Open)
of PPT algorithms which are defined as follows:

KeyGen(1κ, n) : Takes a security parameter κ and the group size n as input. It
generates and outputs a group verification key gpk, a group opening key gok,
as well as a list of group signing keys gsk = {gski}i∈[n].

Sign(gski,m) : Takes a group signing key gski and a message m as input and
outputs a signature σ.

Verify(gpk,m, σ) : Takes a group verification key gpk, a message m and a signa-
ture σ as input, and outputs a bit b.

Open(gok,m, σ) : Takes a group opening key gok, a message m and a signature
σ as input, and outputs an identity i.

The GS security properties are formally defined as follows (we omit correctness).

Prismacloud Deliverable D5.9

79 of 100

Definition 5 (Anonymity). A GS is anonymous, if for all PPT adversaries
A there exists a negligible function ε(·) such that

Pr




(gpk, gok, gsk)← KeyGen(1κ, n),
b←R {0, 1}, O ← {Open(gok, ·, ·)},
(i?0, i

?
1,m

?, st)← AO(gpk, gsk),
σ ← Sign(gski?b ,m

?), b? ← AO(σ, st)

:
b = b? ∧

(m?, σ) /∈ QOpen
2


 ≤ ε(κ),

where A runs in two stages and QOpen
2 records the Open queries in stage two.

Definition 6 (Traceability). A GS is traceable, if for all PPT adversaries A
there exists a negligible function ε(·) such that

Pr




(gpk, gok, gsk)← KeyGen(1κ, n),
O ← {Sig(·, ·),Key(·)},
(m?, σ?)← AO(gpk, gok),
i← Open(gok,m?, σ?)

:
Verify(gpk,m?, σ?) = 1 ∧

(i = ⊥ ∨ (i /∈ QKey ∧
(i,m?) /∈ QSig))


 ≤ ε(κ),

where Sig(i,m) returns Sign(gski,m), Key(i) returns gski, and QSig and QKey

record the queries to the signing and key oracle respectively.

We call a GS secure, if it is correct, anonymous and traceable.

3 Security Model

Now we formally define signer-anonymous designated-verifier redactable signa-
ture schemes (AD-RS). To obtain the most general result, we follow [DPSS15]
and do not make the structure of the messages to be signed explicit. Inspired
by [MPV09], we view signatures output by Sign as being of the form σ = (σ, σ).
That is, signatures are composed of a public signature component σ and a private
signature component σ, where σ may also be empty. For the sake of simple pre-
sentation we model our system for static groups, since an extension to dynamic
groups [BSZ05] is straight forward.

Definition 7 (AD-RS). An AD-RS is a tuple (Setup, DVGen, Sign, GVerify,
Open, Redact, Verify, Sim) of PPT algorithms, which are defined as follows.

Setup(1κ, n) : Takes a security parameter κ and the group size n as input. It
generates and outputs a group public key gpk, a group opening key gok, and
a list of group signing keys gsk = {gski}i∈[n].

DVGen(1κ) : Takes a security parameter κ as input and outputs a designated
verifier key pair (vskj , vpkj).

Sign(gski,m, ADM) : Takes a group signing key gski, a message m, and admissible
modifications ADM as input, and outputs a signature σ.

GVerify(gpk,m, σ) : Takes a group public key gpk, a message m, and a signature
σ as input, and outputs a bit b.

Prismacloud Deliverable D5.9

80 of 100

Open(gok,m, σ) : Takes a group opening key gok, a message m, and a valid sig-
nature σ as input, and outputs an identity i.

Redact(gpk, vpkj ,m, σ,MOD) : Takes a group public key gpk, a designated-verifier
public key vpkj, a message m, a valid signature σ, and modification instruc-
tions MOD as input, and returns a designated-verifier message-signature pair
(m̊, ρ).

Verify(gpk, vpkj ,m, ρ) : Takes a group public key gpk, a designated-verifier public
key vpkj, a message m, and a designated-verifier signature ρ. It returns a bit
b.

Sim(gpk, vskj ,m, ADM,MOD, σ): Takes a group public key gpk, a designated-verifier
secret key vskj, a message m, admissible modifications ADM, modification in-
structions MOD, and a valid public signature component σ as input and out-
puts a designated-verifier message signature pair (m̊, ρ).

Oracles. We base our security notions on the following oracles and assume that
(gpk, gok, gsk) generated in the experiments are implicitly available to them. The
environment stores a list DVK of designated-verifier key pairs, and a set of public
signature components SIG. Each list entry and each set is initially set to ⊥.

Key(i) : This oracle returns gski.
DVGen(j) : If DVK[j] 6= ⊥ this oracle returns ⊥. Otherwise, it runs (vskj , vpkj)←

DVGen(1κ), sets DVK[j]← (vskj , vpkj), and returns vpkj .
DVKey(j) : This oracle returns vskj .
Sig(i,m, ADM) : This oracle runs σ = (σ, σ) ← Sign(gski,m, ADM), sets SIG ←

SIG ∪ {σ} and returns σ.
Open(m, σ) : This oracle runs i← Open(gok,m, σ) and returns i.
Sim(j,m, ADM,MOD, σ) : If σ /∈ SIG, this oracle returns ⊥. Otherwise, it runs

(m̊, ρ)← Sim(gpk, vskj ,m, ADM,MOD, σ) and returns (m̊, ρ).
RoS(b, j,m, ADM,MOD, σ) : If b = 0, this oracle runs (m̊, ρ)← Redact(gpk, vpkj ,m,

σ,MOD) and returns (m̊, ρ). Otherwise, it uses the Sim oracle to obtain (m̊, ρ)←
Sim(j,m, ADM,MOD, σ) and returns (m̊, ρ).

Ch(i, j, (m0, ADM0,MOD0), (m1, ADM1,MOD1), b) : This oracle runs σc ← Sign(gski,
mc, ADMc), (m̊c, ρc) ← Redact(vpkj ,mc, σc,MODc), for c ∈ {0, 1}. If m̊0 6=
m̊1 ∨ ˚ADM0 6= ˚ADM1, it returns ⊥ and (m̊b, σb, ρb) otherwise.4

The environment stores the oracle queries in lists. In analogy to the oracle labels,
we use QKey,QDVGen,QDVKey,QSig,QOpen,QSim,QRoS, and QCh to denote them.

Security Notions. We require AD-RS to be correct, group unforgeable, desig-
nated-verifier unforgeable, simulatable, signer anonymous, and private.

Correctness guarantees that all honestly computed signatures verify correctly.
Formally, we require that for all κ ∈ N, for all n ∈ N, for all (gpk, gok, gsk)←

Setup(1κ, n), for all (vskj , vpkj)← DVGen(1κ), for all (vsk`, vpk`)← DVGen(1κ),
for all (m, ADM,MOD) where MOD � ADM ∧ ADM � m, for all (m′, ADM

′,MOD
′) where

MOD
′ � ADM

′ ∧ ADM
′ � m′ for all i ∈ [n], for all σ = (σ, σ)← Sign(gski,m, ADM),

4 Here ˚ADM0 and ˚ADM1 are derived from ADM0 and ADM1 with respect to MOD0 and MOD1.

Prismacloud Deliverable D5.9

81 of 100

for all u← Open(gok,m, σ), for all (m̊, ρ)← Redact(gpk, vpkj ,m, σ,MOD), for all
(m̊′, ρ′)← Sim(gpk, vsk`,m

′, ADM
′,MOD

′, σ), it holds with overwhelming probabil-
ity that GVerify(gpk,m, σ) = 1 ∧ i = u ∧ Verify(gpk, vpkj , m̊, ρ) = 1 ∧ Verify(
gpk, vpk`, m̊

′, ρ′) = 1 and that m̊←−MOD m ∧ m̊′ ←−MOD
′

m′.

Group unforgeability captures the intuition that the only way of obtaining valid
signatures on messages is by applying “allowed” modifications to messages which
were initially signed by a group member. Moreover, this property guarantees that
every valid signature can be linked to the original signer by some authority.

Technically, the definition captures the traceability property of group signa-
tures while simultaneously taking the malleability of RS into account.

Definition 8. An AD-RS is group unforgeable, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr




(gpk, gok, gsk)← Setup(1κ, n),
O ← {Sig(·, ·, ·),Key(·)},
(m?, σ?)← AO(gpk, gok),
u← Open(gok,m?, σ?)

:
GVerify(gpk,m?, σ?) = 1 ∧

(u = ⊥ ∨ (u /∈ QKey ∧
@(u,m, ADM) ∈ QSig : m? �

ADM

m))


 ≤ ε(κ).

Designated-verifier unforgeability models the requirement that a designated-
verifier signature can only be obtained in two ways: either by corretly redacting
a signature (which can be done by everybody having access to the latter), or
by having access to the secret key of the designated verifier. The former op-
tion would be chosen whenever a signature is to be legitimately forwarded to a
receiver, while the latter enables the designated verifier to fake signatures.

Together with the previous definition, designated-verifier unforgeability guar-
antees that no adversary can come up with a designated-verifier signature for a
foreign public key: by Definition 8 it is infeasible to forge a signature—and Def-
inition 9 states that the only way of generating a designated-verifier signature
for somebody else is to know a valid signature to start from.

Definition 9. An AD-RS is designated-verifier unforgeable, if there exists a
PPT opener O = (O1, O2) such that for every PPT adversary A there is a
negligible function ε1(·) such that

∣∣∣∣∣
Pr
[
(gpk, gok, gsk)← Setup(1κ, n) : A(gpk, gok, gsk) = 1

]
−

Pr
[
(gpk, gok, gsk, τ)← O1(1κ, n) : A(gpk, gok, gsk) = 1

]
∣∣∣∣∣ ≤ ε1(κ),

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr




(gpk, gok, gsk, τ)← O1(1κ, n),
O ← {Sig(·, ·, ·),Key(·),
DVGen(·),DVKey(·),
Sim(·, ·, ·, ·, ·)},
(m?, ρ?, v?)← AO(gpk, gok),
u← O2(τ, DVK,m?, ρ?, v?)

:

Verify(gpk, vpkv? ,m
?, ρ?) = 1 ∧

v? /∈ QDVKey ∧
∧ (u = ⊥ ∨ (u /∈ QKey ∧

@(u,m, ADM) ∈ QSig : m? �
ADM

m)) ∧
@(v?,m, ADM, ·, ·) ∈ QSim : m? �

ADM

m)



≤ ε2(κ).

Prismacloud Deliverable D5.9

82 of 100

In our definition, we assume a simple key registration for designated verifiers
to ensure that all designated-verifier key pairs have been honestly created and
thus an adversary is not able to mount rogue key attacks. In practice, this re-
quirement can often be alleviated by introducing an option to check the honest
generation of the keys (cf. [RY07]), which we omit for simplicity.

Simulatability captures that designated verifiers can simulate signatures on arbi-
trary messages which are indistinguishable from honestly computed signatures.

Definition 10. An AD-RS satisfies the simulatability property, if for all PPT
adversaries A there is a negligible function ε(·) such that it holds that

Pr




(gpk, gok, gsk)← Setup(1κ, n), b←R {0, 1},
O ← {DVGen(·),DVKey(·)},
((m0, ADM0,MOD0), (m1, ADM1),
i?, j?, st)← AO(gpk, gok, gsk),
σ = (σ, σ)← Sign(gski? ,mb, ADMb),
(m̊0, ρ)← RoS(b, j?,m0, ADM0,MOD0, σ),
b? ← AO(σ, m̊0, ρ, st)

:
b = b? ∧

ADM0 � m0 ∧
ADM1 � m1




≤ 1/2 + ε(κ).

As mentioned earlier, we assume that signatures consist of a private and a public
component (the latter being denoted by σ). To eliminate potential privacy issues
associated with a public σ, we also give σ as input to the simulator and the
adversary, and require that the adversary cannot tell real and faked signatures
apart even when knowing σ. This way, our definitional framework guarantees
that these parts do not contain any sensitive information.

In a realization of the system, the public parts of all signatures issued by the
hospital would be made publicly available (without further meta-information).

Signer anonymity requires that only the opening authority can determine the
identity of a signer.

Definition 11. An AD-RS is signer anonymous, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr




(gpk, gok, gsk)← Setup(1κ, n),
b←R {0, 1},O ← {Open(·, ·)},
(i?0, i

?
1,m

?, ADM
?, st)← AO(gpk, gsk),

σ ← Sign(gski?b ,m
?, ADM

?),

b? ← AO(σ, st)

:

b = b? ∧
@(m, (σ, ·)) ∈ QOpen

2 :
m �

ADM

m?



≤ 1/2 + ε(κ),

and A runs in two stages and QOpen
2 records queries to oracle Open in stage two.

The definition guarantees that—no matter how many signatures already have
been opened—the signers’ identities for all other signatures remain secret. The
formulation is, up to the last clause of the winning condition, similar to the
anonymity definition of group signature schemes (cf. Definition 5). We, how-
ever, need to adapt the last clause because Definition 5 requires signatures to be

Prismacloud Deliverable D5.9

83 of 100

non-malleable. In contrast, our signatures are malleable by definition. However,
we can still require parts of the signature, and in particular the public part, to
be non-malleable. By doing so, we can achieve a strong notion that resembles
anonymity in the sense of group signatures whenever honestly generated signa-
tures have different public components with overwhelming probability. This is
in particular the case for our instantiations provided in the next sections.

Privacy guarantees that a redacted designated-verifier signature does not leak
anything about the blacked-out parts of the original message.

Definition 12. An AD-RS is private, if for all PPT adversaries A there is a
negligible function ε(·) such that

Pr




(gpk, gok, gsk)← Setup(1κ, n), b←R {0, 1},
O ← {Sig(·, ·, ·),Ch(·, ·, ·, ·, b)},
b? ← AO(gpk, gok, gsk)

: b = b?


 ≤ 1/2 + ε(κ).

We call an AD-RS secure, if it is correct, group unforgeable, designated-verifier
unforgeable, simulatable, signer anonymous, and private.

Group Redactable Signatures. When omitting the DV-related notions and
oracles, one directly obtains a definition of group redactable signatures, which
may also be useful for applications that require revocable signer-anonymity.

4 A Generic Construction

Now we present a simple generic construction which can be built by combining
any GS, any RS, and any Π that admits proofs of knowledge in a black-box way.
In Scheme 1 we present our construction which follows the intuition given in the
introduction. We use Π to prove knowledge of a witness for the following NP
relation R required by the verification of designated-verifier signatures.

((m, pk, vpkj), (σR, σV)) ∈ R ⇐⇒
RS.Verify(pk,m, σR) = 1 ∨ Σ.Verify(vpkj ,m, σV) = 1.

The rationale behind choosing R in this way is that this yields the most general
result. That is, no further assumptions on RS or Σ are required.

Theorem 1 (proven in Appendix B). If GS, RS, and Σ are secure and Π
is witness indistinguishable and admits proofs of knowledge, then Scheme 1 is
secure.

For an instantiation of our construction we can use standard GS and standard RS,
where multiple practically efficient instantiations exist. Thus, the time required
for signature creation/verification is mainly determined by the cost of the proof
of knowledge of the RS signature σR. We, however, want to emphasize that—
depending on the concrete RS—this proof can usually be instantiated by means
of relatively cheap Σ-protocols. Ultimately, as we will show below, we can replace
this proof with a much cheaper proof by exploiting properties of the used RS.

Prismacloud Deliverable D5.9

84 of 100

Setup(1κ, n) : Run (gpk, gok, gsk) ← GS.KeyGen(1κ, n), crs ← Π.Setup(1κ), set
gpk′ ← (gpk, crs) and return (gpk′, gok, gsk).

DVGen(1κ) : Run (vskj , vpkj)← Σ.KeyGen(1κ) and return (vskj , vpkj).

Sign(gski,m, ADM) : Run (sk, pk) ← RS.KeyGen(1κ) and return σ = (σ, σ) ← ((pk, σG),
(σR,RED)), with

σG ← GS.Sign(gski, pk), and ((m, σR), RED)← RS.Sign(sk,m, ADM).

GVerify(gpk,m, σ) : Parse σ as ((pk, σG), (σR, ·)) and return 1 if the following holds
and 0 otherwise:

GS.Verify(gpk, pk, σG) = 1 ∧ RS.Verify(pk,m, σR) = 1.

Open(gok,m, σ) : Parse σ as ((pk, σG), σ) and return GS.Open(gok, pk, σG).

Redact(gpk, vpkj ,m, σ,MOD) : Parse σ as ((pk, σG), (σR, RED)) and return (m̊, ρ), where

((m̊, σ̊R), ·)← RS.Redact(pk,m, σR,MOD, RED),

π ← Π.Proof(crs, (m̊, pk, vpkj), (̊σR,⊥)), and

ρ← ((pk, σG), π).

Verify(gpk, vpkj ,m, ρ) : Parse ρ as ((pk, σG), π) and return 1 if the following holds, and
0 otherwise:

GS.Verify(gpk, pk, σG) = 1 ∧ Π.Verify(crs, (m, pk, vpkj), π) = 1.

Sim(gpk, vskj ,m, ADM,MOD, σ) : If MOD � ADM ∧ ADM � m, parse σ as (pk, σG), run
m̊←−MOD m, and return (m̊, ρ), where

σV ← Σ.Sign(vskj , m̊),

π ← Π.Proof(crs, (m̊, pk, vpkj), (⊥, σV)), and

ρ← (σ, π).
Otherwise, return ⊥.

Scheme 1: Black-Box AD-RS

5 Boosting Efficiency via Key-Homomorphisms

In [DPSS15] it is shown that RS can be generically constructed from any EUF-
CMA secure signature scheme and indistinguishable accumulators [DHS15]. In
our setting it is most reasonable to consider messages as an (ordered) sequence
of message blocks. A straight forward solution would thus be to build upon
[DPSS15, Scheme 2], which is tailored to signing ordered sequences of messages
m = (m1, . . . ,mn). Unfortunately, this construction aims to conceal the number
of message blocks in the original message, and the positions of the redactions.
This can be dangerous in our setting, since it might allow to completely change
the document semantics. Besides that, it inherently requires a more complex
construction.

Prismacloud Deliverable D5.9

85 of 100

To this end, we pursue a different direction and require another message rep-
resentation: we make the position i of the message blocks mi in the message
explicit and represent messages as sets m = {1||m1, . . . , n||mn}. Besides solv-
ing the aforementioned issues, it also allows us to build upon the (simpler) RS
paradigm for sets [DPSS15, Scheme 1]. This paradigm subsumes the essence of
many existing RSs and works as follows. Secret keys, public keys, and signatures
are split into two parts each. One corresponds to the signature scheme Σ, and
one corresponds to the accumulator Λ. Then, Λ is used to encode the message,
whereas Σ is used to sign the encoded message. Consequently, we can look at RS
key pairs and signatures as being of the form (sk, pk) = ((skΣ, skΛ, pkΛ), (pkΣ,
pkΛ)) and σR = (σΣ, σΛ) where the indexes denote their respective types. We
emphasize that for accumulators it holds by definition that skΛ is an optional
trapdoor which may enable more efficient computations, but all algorithms also
run without skΛ and the output distribution of the algorithms does not depend
on whether the algorithms are executed with or without skΛ [DHS15, DPSS15].
We require this property to be able to create designated verifier signatures (cf.
Sim) and use (skΣ,⊥, pkΛ) to denote an RS secret key without skΛ.

RS following this paradigm only require Σ (besides correctness) to be EUF-
CMA secure. We observe that additional constraints on Σ—and in particular the
key-homomorphism as we define it below—does not influence RS security, while
it enables us to design the relation R such that it admits very efficient proofs.

Key-Homomorphic Signatures. Informally, we require signature schemes
where, for a given public key and a valid signature under that key, one can
adapt the public key and the signature so that the resulting signature is valid
with respect to the initial message under the new public key. Moreover, adapted
signatures need to be identically distributed as fresh signatures under the secret
key corresponding to the adapted public key.

Key-malleability in the sense of adapting given signatures to other signa-
tures under related keys has so far mainly been studied in context of related-key
attacks (RKAs) [BCM11], where one aims to rule out such constructions. Signa-
tures with re-randomizable keys which allow to consistently update secret and
public keys, but without considering adaption of existing signatures, have re-
cently been introduced and studied in [FKM+16]. As we are not aware of any
constructive use of and definitions for the functionality we require, we define
key-homomorphic signatures inspired by key-homomorphic symmetric encryp-
tion (cf. [AHI11]).

Let Σ = (KeyGen,Sign,Verify) be an EUF-CMA secure signature scheme
where the secret and public keys live in groups (H,+) and (G, ·), respectively.
Inspired by the definition for encryption schemes in [TW14], we define the fol-
lowing.

Definition 13 (Secret-Key to Public-Key Homomorphism). A signature
scheme Σ provides a secret-key to public-key homomorphism, if there exists an
efficiently computable map µ : H → G such that for all sk, sk′ ∈ H it holds that
µ(sk + sk′) = µ(sk) · µ(sk′), and for all (sk, pk) output by KeyGen, it holds that
pk = µ(sk).

Prismacloud Deliverable D5.9

86 of 100

Now, we define key-homomorphic signatures, where we focus on the class of func-
tions Φ+ representing linear shifts. We stress that Φ+ is a finite set of functions,
all with the same domain and range, and, in our case depends on the public key
of the signature scheme (which is not made explicit). Moreover, Φ+ admits an
efficient membership test and its functions are efficiently computable.

Definition 14 (Φ+-Key-Homomorphic Signatures). A signature scheme is
called Φ+-key-homomorphic, if it provides a secret-key to public-key homomor-
phism and an additional PPT algorithm Adapt, defined as:

Adapt(pk,m, σ,∆) : Takes a public key pk, a message m, a signature σ, and a
function ∆ ∈ Φ+ as input, and outputs a public key pk′ and a signature σ′,

where for all ∆ ∈ Φ+, all (sk, pk) ← KeyGen(1κ), all messages m, all σ ←
Sign(sk,m), all (pk′, σ′) ← Adapt(pk,m, σ,∆) it holds that Verify(pk′,m, σ′) = 1
and pk′ = ∆(pk).

For simplicity we sometimes identify a function ∆ ∈ Φ+ with its “shift amount”
∆ ∈ H. To model that freshly generated signatures look identical as adapted
signatures on the same message, we introduce the following additional property.

Definition 15 (Adaptability of Signatures). A Φ+-key-homomorphic sig-
nature scheme provides adaptability of signatures, if for every κ ∈ N, and every
message m, it holds that Adapt(pk,m,Sign(sk,m), ∆) and (pk · µ(∆),Sign(sk +
∆,m)) as well as (sk, pk) and (sk′, µ(sk′)) are identically distributed, where (sk,
pk)← KeyGen(1κ), sk′←R H, and ∆←R Φ+.

For an in-depth treatment and examples of key-homomorphic signatures, we re-
fer the reader to a more recent work [DS16b]. The important bottom-line here
is that there are various efficient schemes that satisfy Definition 15. For in-
stance, Schnorr signatures [Sch91], BLS signatures [BLS04], the recent scheme
by Pointcheval and Sanders [PS16] or Waters signatures [Wat05].

Φ+-Key-Homomorphic Redactable Signature Schemes. When instanti-
ating the RS construction paradigm from [DPSS15] (as outlined above) with a
Φ+-key-homomorphic signature scheme, the key homomorphism of the signa-
ture scheme straight-forwardly carries over to the RS and we can define Adapt
as follows.

Adapt(pk,m, σ,∆) : Parse pk as (pkΣ, pkΛ) and σ as (σΣ, σΛ), run (pk′Σ, σ
′
Σ) ←

Adapt(pkΣ, Λ(m), σΣ, ∆) and return (pk′, σ′)← ((pk′Σ, pkΛ), (σ′Σ, σΛ)).

This allows us to concisely present our construction in Scheme 2. The NP re-
lation, which needs to be satisfied by valid designated-verifier signatures is as
follows.

((pk, vpkj), (sk, vskj)) ∈ R ⇐⇒ pk = µ(sk) ∨ Σ.VKey(vskj , vpkj) = 1.

In the discrete logarithm setting such a proof requires an OR-Schnorr proof of
two discrete logs, i.e., only requires two group exponentiations.

Prismacloud Deliverable D5.9

87 of 100

Redact(gpk, vpkj ,m, σ,MOD) : Parse σ as ((pk, σG), (σR, RED)) and return (m̊, ρ), where

sk′←R H, pk′ ← µ(sk′), (pkR, σ
′
R)← Adapt(pk,m, σR, sk′),

((m̊, σ̊′R), ·)← RS.Redact(pkR,m, σ
′
R,MOD, RED),

π ← Π.Proof(crs, (pk′, vpkj), (sk′,⊥)), and ρ← ((pk, σG), pk′, σ̊′R, π).

Verify(gpk, vpkj ,m, ρ) : Parse ρ as ((pk, σG), pk′, σ̊′R, π), let pk = (pkΣ, pkΛ), compute
pkR ← (pkΣ · pk′, pkΛ) and return 1 if the following holds, and 0 otherwise:

GS.Verify(gpk, pk, σG) = 1 ∧ Π.Verify(crs, (pk′, vpkj), π) = 1

∧ RS.Verify(pkR,m, σ̊
′
R) = 1.

Sim(gpk, vskj ,m, ADM,MOD, σ) : If MOD � ADM ∧ ADM � m, parse σ as ((pkΣ, pkΛ), σG)
and return (m̊, ρ), where

skΣ
R←R H, pkΣ

R ← µ(skΣ
R), pk′ ← pk−1

Σ · pkΣ
R,

((m, σ′R), RED)← RS.Sign((skΣ
R,⊥, pkΛ),m, ADM),

((m̊, σ̊′R), ·)← RS.Redact((pkΣ
R, pkΛ),m, σ′R,MOD, RED),

π ← Π.Proof(crs, (pk′, vpkj), (⊥, vskj)), and ρ← (σ, pk′, σ̊′R, π).

Scheme 2: Semi-Black-Box AD-RS where Setup, DVGen, Sign, GVerify, and Open
are as in Scheme 1.

Theorem 2 (proven in Appendix C). If GS is secure, RS is an adaptable RS
following [DPSS15, Scheme 1], Σ is secure, and Π is weakly simulation sound
extractable, then Scheme 2 is also secure.

5.1 Performance Overview

In this section we evaluate the practical efficiency of Scheme 2. We first assess
the practicality of the underlying components and then analyze the overhead
imposed by the provably provided strong security guarantees.

Group Signatures. It is well known that there exist multiple practically efficient
group signature schemes for non-constrained devices such as standard PCs or
even more powerful machines in the cloud. Yet, to adequately protect the doctor’s
group signing key—which is the only key that persists over multiple signing
operations—it might make sense to compute the doctor’s group signature σG

on the one-time RS public key pk upon Sign on some dedicated signature token
such as a smart card or smart phone. Using the estimations in [DS16a], such a
signature can be computed in ≈ 1s on an ARM Cortex-M0+, a processor that
is small enough to be employed in smart cards. While this is already acceptable,
the performance on smart phones will even be significantly better. For instance,
[CDDT12] report execution times of approximately 150ms for the computation
of a group signature with the well-known BBS [BBS04] scheme on a by now
rather outdated smart phone.

Prismacloud Deliverable D5.9

88 of 100

Key-Homomorphic Redactable Signatures. We first note that the RS keys are
freshly generated and the secret keys can be deleted after each signing opera-
tion. The respective operations can therefore be directly executed on the doctor’s
PC, potentially even in parallel to the computation of the group signature. Since
we are not aware of any performance evaluation of RS on standard PCs, we im-
plemented one possible instantiation of [DPSS15, Scheme 1]. In particular, we
based our RS implementation on Schnorr signatures and the indistinguishable
t-SDH accumulator from [DHS15] without further optimizations regarding effi-
ciency. In Table 1, we present our performance results on an Intel Core i7-4790 @
3.60GHz with 8GB of RAM, running Java 1.8.0 91 on top of Ubuntu 16.04. Each
value represents the mean of 100 consecutive executions. These results confirm
that the required RS paradigm is perfectly suited for our application.

Sign Verify Redact Verify (after Redact)

73.1ms 886.3ms 0.1ms 450.3ms

Table 1. RS timings in milliseconds, with a number of n = 100 message blocks, 50%
admissibly redactable blocks and 25% of the blocks being redacted upon Redact.

Additional Computations. Using Schnorr signatures, one only needs two group
exponentiations for the proof of knowledge5; the adaption of the signature only
requires a Zp operation, which, compared to the group exponentiations, can be
neglected. All in all, the additional computations can thus be ignored compared
to those of GS and RS6, even on very constrained devices such as [UW14].

Signature Size. Regarding signature size, the dominant part is the size of the RS
public key and signature, respectively, which is in turn determined by the choice
of the accumulator. In particular, when instantiating the RS with an accumulator
having constant key size and supporting batch verification, one can even obtain
constant size signatures. We refer the reader to [DPSS15] for a discussion on RS
signature sizes and [DHS15] for an overview of suitable accumulators.

6 Conclusion

We introduce the notion of signer-anonymous designated-verifier redactable sig-
natures, extending redactable signatures in their vanilla form in several impor-
tant directions. These additional features are motivated by a real world use-case

5 The results of [FKMV12] confirm that one can use Fiat-Shamir transformed Σ-
protocols in the discrete log setting as simulation sound extractable (and therefore
weakly simulation sound extractable) proof system when including the statement x
upon computing the hash for the challenge.

6 This is underpinned by the results in Table 1, where O(n) exponentiations happen.

Prismacloud Deliverable D5.9

89 of 100

in the health care field, demonstrating its practical relevance. Besides rigorously
modelling this primitive, we provide two instantiations. While both are interest-
ing from a theoretical point of view, the latter is also interesting in practice. In
particular, due to using key-homomorphic signatures as we introduce them in
this paper, we obtain a simple and practically efficient solution.

References

[AHI11] Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security under
related-key attacks and applications. In ICS, 2011.

[BBD+10] Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin
Franz, Stefan Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Peter,
Bertram Poettering, and Dominique Schröder. Redactable signatures for
tree-structured data: Definitions and constructions. In ACNS, 2010.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
CRYPTO, 2004.

[BCM11] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against
related-key attacks and tampering. In ASIACRYPT, 2011.

[BFLS10] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder.
Unlinkability of sanitizable signatures. In PKC, 2010.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil
pairing. J. Cryptology, 17(4), 2004.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of
group signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions. In EUROCRYPT, 2003.

[BPS13] Christina Brzuska, Henrich Christopher Pöhls, and Kai Samelin. Efficient
and perfectly unlinkable sanitizable signatures without group signatures. In
EuroPKI 2013, 2013.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signa-
tures: The case of dynamic groups. In CT-RSA, 2005.

[CA89] David Chaum and Hans Van Antwerpen. Undeniable signatures. In
CRYPTO, 1989.

[CDDT12] Sébastien Canard, Nicolas Desmoulins, Julien Devigne, and Jacques Traoré.
On the implementation of a pairing-based cryptographic protocol in a con-
strained device. In Pairing, 2012.

[CDHK15] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions
and practical constructions. In ASIACRYPT, 2015.

[Cha94] David Chaum. Designated confirmer signatures. In EUROCRYPT, 1994.
[DHS15] David Derler, Christian Hanser, and Daniel Slamanig. Revisiting crypto-

graphic accumulators, additional properties and relations to other primi-
tives. In CT-RSA, 2015.

[DPSS15] David Derler, Henrich C. Pöhls, Kai Samelin, and Daniel Slamanig. A gen-
eral framework for redactable signatures and new constructions. In ICISC,
2015.

[DS16a] David Derler and Daniel Slamanig. Fully-anonymous short dynamic group
signatures without encryption, 2016.

[DS16b] David Derler and Daniel Slamanig. Key-homomorphic signatures and
applications to multiparty signatures. IACR Cryptology ePrint Archive,
2016:792, 2016.

Prismacloud Deliverable D5.9

90 of 100

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider,
Dominique Schröder, and Mark Simkin. Efficient unlinkable sanitizable
signatures from signatures with re-randomizable keys. In PKC, 2016.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele
Venturi. On the non-malleability of the fiat-shamir transform. In IN-
DOCRYPT, 2012.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO ’86, volume 263, pages
186–194, 1986.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In ASIACRYPT, 2006.

[JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner.
Homomorphic signature schemes. In CT-RSA, 2002.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated veri-
fier proofs and their applications. In EUROCRYPT, 1996.

[LWB05] Helger Lipmaa, Guilin Wang, and Feng Bao. Designated verifier signature
schemes: Attacks, new security notions and a new construction. In ICALP,
2005.

[LZCS16] Russell W. F. Lai, Tao Zhang, Sherman S. M. Chow, and Dominique
Schröder. Efficient sanitizable signatures without random oracles. In ES-
ORICS, 2016.

[MPV09] Jean Monnerat, Sylvain Pasini, and Serge Vaudenay. Efficient deniable
authentication for signatures. In ACNS, 2009.

[PS15] Henrich C. Pöhls and Kai Samelin. Accountable redactable signatures. In
ARES, 2015.

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures. In
CT-RSA, 2016.

[RY07] Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession:
Securing multiparty signatures against rogue-key attacks. In EUROCRYPT,
2007.

[SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Uni-
versal designated-verifier signatures. In ASIACRYPT, 2003.

[SBZ01] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction sig-
natures. In ICISC, 2001.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. J.
Cryptology, 4(3):161–174, 1991.

[SS08] Siamak Fayyaz Shahandashti and Reihaneh Safavi-Naini. Construction of
universal designated-verifier signatures and identity-based signatures from
standard signatures. In PKC, 2008.

[TW14] Stefano Tessaro and David A. Wilson. Bounded-collusion identity-based en-
cryption from semantically-secure public-key encryption: Generic construc-
tions with short ciphertexts. In PKC, 2014.

[UW14] Thomas Unterluggauer and Erich Wenger. Efficient pairings and ECC for
embedded systems. In CHES, 2014.

[Ver06] Damien Vergnaud. New extensions of pairing-based signatures into universal
designated verifier signatures. In ICALP, 2006.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles.
In EUROCRYPT, 2005.

Prismacloud Deliverable D5.9

91 of 100

A Definitions and Security Notions

Digital Signatures. Subsequently, we recall a definition of signatures.

Definition 16. A signature scheme Σ is a triple (KeyGen, Sign,Verify) of PPT
algorithms, which are defined as follows:

KeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs
a secret (signing) key sk and a public (verification) key pk with associated
message space M (we may omit to mention the message space M).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈ M as
input and outputs a signature σ.

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈M and a
signature σ as input and outputs a bit b ∈ {0, 1}.

In addition, we require an algorithm VKey(·, ·), which checks whether a key
pair is a valid output of KeyGen, i.e., for any (sk, pk) ← KeyGen(1κ) we have
VKey(sk, pk) = 1. Besides correctness, Σ needs to be existentially unforgeable
under adaptively chosen message attacks (EUF-CMA). Subsequently, we formally
recall the definition of EUF-CMA security.

Definition 17 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if for
all PPT adversaries A there is a negligible function ε(·) such that

[
(sk, pk)← KeyGen(1κ),
(m?, σ?)← ASign(sk,·)(pk)

:
Verify(pk,m?, σ?) = 1 ∧

m? /∈ QSign

]
≤ ε(κ),

where the environment keeps track of the queries to the signing oracle via QSign.

We call a signature scheme secure, if it is correct and provides EUF-CMA security.

Non-Interactive Proof Systems. Now, we recall a standard definition of non-
interactive proof systems (Π). Our definitions are inspired by [Gro06]. Therefore,
let LR be an NP-language with witness relation R defined as LR = {x | ∃ w :
R(x,w) = 1}.
Definition 18. A non-interactive proof system Π is a tuple of algorithms (Setup,
Proof, Verify), which are defined as follows:

Setup(1κ) : This PPT algorithm takes a security parameter κ as input, and
outputs a common reference string crs.

Proof(crs, x, w) : This algorithm takes a common reference string crs, a state-
ment x, and a witness w as input, and outputs a proof π.

Verify(crs, x, π) : This PPT algorithm takes a common reference string crs, a
statement x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

If, in addition, if algorithm Proof runs in polynomial time, then we talk about
a non-interactive witness-indistinguishable argument system. We require Π to
be complete, sound, and adaptively witness-indistinguishable. Subsequently, we
recall formal definition of those properties.

Prismacloud Deliverable D5.9

92 of 100

Definition 19 (Completeness). A non-interactive proof system Π is com-
plete, if for every adversary A it holds that

Pr

[
crs← Setup(1κ), (x?, w?)← A(crs),
π ← Proof(crs, x?, w?)

:
Verify(crs, x?, π) = 1

∧ (x?, w?) ∈ R

]
= 1.

Definition 20 (Soundness). A non-interactive proof system Π is sound, if for
every PPT adversary A there is a negligible function ε(·) such that

Pr

[
crs← Setup(1κ), (x?, π?)← A(crs) :

Verify(crs, x?, π?) = 1
∧ x? /∈ LR

]
≤ ε(κ).

If ε = 0, we have perfect soundness.

Definition 21 (Adaptive Witness-Indistinguishability). A non-interactive
proof system Π is adaptively witness-indistinguishable, if for every PPT adver-
sary A there is a negligible function ε(·) such that

Pr
[
crs← Setup(1κ), b←R {0, 1}, b? ← AP(crs,·,·,·,b)(crs) : b = b?

]
≤ ε(κ),

where P(crs, x, w0, w1, b) := Proof(crs, x, wb), and P returns ⊥ if (x,w0) /∈
R ∨ (x,w1) /∈ R.

If ε = 0, we have perfect adaptive witness-indistinguishability.

Definition 22 (Adaptive Zero-Knowledge). A non-interactive proof system
Π is adaptively zero-knowledge, if there exists a PPT simulator S = (S1,S2)
such that for every adversary A there is a negligible function ε(·) such that

∣∣∣∣∣∣

Pr
[
crs← Setup(1κ) : AP(crs,·,·)(crs) = 1

]
−

Pr
[
(crs, τ)← S1(1κ) : AS(crs,τ,·,·)(crs) = 1

]

∣∣∣∣∣∣
≤ ε(κ),

where, τ denotes a simulation trapdoor. Thereby, P and S return ⊥ if (x,w) /∈ R
or π ← Proof(crs, x, w) and π ← S2(crs, τ, x), respectively, otherwise.

If ε = 0, we have perfect adaptive zero-knowledge. It is easy to show that adap-
tive zero-knowledge implies adaptive witness indistinguishability.

Definition 23 (Proof of Knowledge). A non-interactive proof system Π ad-
mits proofs of knowledge, if there exists a PPT extractor E = (E1,E2) such that
for every PPT adversary A there is a negligible function ε1(·) such that

∣∣∣∣∣
Pr
[
crs← Setup(1κ) : A(crs) = 1

]
−

Pr
[
(crs, ξ)← E1(1κ) : A(crs) = 1

]
∣∣∣∣∣ ≤ ε1(κ),

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr

[
(crs, τ)← E1(1κ), (x?, π?)← A(crs),
w ← E2(crs, ξ, x?, π?)

:
Verify(crs, x?, π?) = 1 ∧

(x?, w) /∈ R

]
≤ ε2(κ).

Prismacloud Deliverable D5.9

93 of 100

Definition 24 (Weak Simulation Sound Extractability). An adaptively
zero-knowledge non-interactive proof system Π is weakly simulation sound ex-
tractable, if there exists a PPT extractor E = (S,E) such that for every adversary
A it holds that

∣∣∣∣∣
Pr
[
(crs, τ)← S1(1κ) : A(crs, τ) = 1

]
−

Pr
[
(crs, τ, ξ)← S(1κ) : A(crs, τ) = 1

]
∣∣∣∣∣ = 0,

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr




(crs, τ, ξ)← S(1κ),
(x?, π?)← AS(crs,τ,·)(crs),
w ← E(crs, τ, ξ, x?, π?)

:
Verify(crs, x?, π?) = 1 ∧

(x?, ·) /∈ QS ∧ (x?, w) /∈ R


 ≤ ε2(κ),

where S(crs, τ, x) := S2(crs, τ, x) and QS keeps track of the queries to and answers
of S.

B Proof of Theorem 1

We show that Theorem 1 holds by proving Lemma 1-6.

Lemma 1. If GS is correct, RS is correct, Σ is correct, and Π is complete, then
Scheme 1 is also correct.

Lemma 1 straight-forwardly follows from inspection; the proof is omitted.

Lemma 2. If GS is traceable and RS is unforgeable, then Scheme 1 is group
unforgeable.

Proof. We construct efficient reductionsRt andRu turning an efficient group un-
forgeability adversary Agu, into an efficient adversary (1) At against traceability
of GS, or (2) Au against unforgeability of the RS.

(1) Rt obtains (gpk, gok) from a GS traceability challenger Ct
κ, completes the

setup as in the real game, and starts Agu on (gpk′, gok). Sig queries are simulated
by obtaining the group signature σG using the Sig oracle provided by Ct

κ and
running the remaining Sign algorithm as in the original protocol. Key queries
are simply forwarded to Ct

κ. Eventually, Agu outputs a forgery (m?, σ?) which
is opened to signer index u (recall that σ? = ((pk, σG), (σR,RED)). If u exists
(u 6= ⊥), and Agu either requested gsku or a group signature on pk for u (i.e.,
u ∈ QKey ∨ (u, pk) ∈ QSign), we abort as we are in the other case. Otherwise,
we output (pk, σG) as a valid forgery for traceability of GS.

Prismacloud Deliverable D5.9

94 of 100

(2) Ru runs the setup as in the real game and starts Agu on (gpk′, gok). On
each Sig query, Ru engages with an RS unforgeability challenger Cu

κ, obtains
pk and computes the RS signature using the Sign oracle provided by Cu

κ. The
remaining simulation is performed as in the original scheme. Eventually, Agu

outputs a forgery (m?, σ?) which is opened to signer index u (recall that σ? =
((pk, σG), (σR,RED)). If u does not exist (u = ⊥), or u exists and Agu neither
requested gsku nor a group signature on pk for u (i.e., u /∈ QKey ∧ (u, pk) /∈ QSign)
we abort as we are in the other case. Otherwise, we know that we have a valid
RS signature on m? under pk which is not derivable from any queried message
(i.e., @ (u,m, ADM) ∈ QSig : m? �

ADM

m) and we can output (m?, σR) as an RS forgery.

Overall Bound. The simulations in both reductions are indistinguishable from a
real game. In front of an adversary we randomly guess the adversary’s strategy,
inducing a loss of 1/2. Our reduction for a Type 1 forger always succeeds if the
adversary succeeds, whereas our reduction for Type 2 succeeds with a probability
of 1/q, where q ≤ poly(κ) is the number of queries to the Sig oracle. Overall, this
means that the probability to break group unforgeability is upper-bounded by
2 ·max{εgu(κ), q · εp(κ)}. ut

Lemma 3. If Π admits proofs of knowledge, Σ is EUF-CMA secure, and Scheme 1
is group unforgeable, then Scheme 1 is also designated-verifier unforgeable.

Proof. We bound the probability to break designated-verifier unforgeability. We
start by defining our opener O = (O1, O2).

O1(1κ, n) : Run (gpk, gok, gsk) ← GS.KeyGen(1κ, n), (crs, τ) ← Π.E1(1κ), set
gpk′ ← (gpk, crs), τ ′ ← (gpk′, gok, gsk, τ) and return (gpk′, gok, gsk, τ ′).

O2(τ, DVK,m?, ρ?) : Parse σ as ((pk, σG), σ) and return u ← GS.Open(gok,
pk, σG).

The tuple (gpk′, gok, gsk) contained in the output of O1 is computationally indis-
tinguishable from the output of Setup under the extraction-CRS indistinguisha-
bility of the proof system.

What remains is to show that—using O—the success probability of every
PPT adversary in the designated-verifier unforgeability game is negligible in
the security parameter. We do so by using a sequence of games, where we let
q ≤ poly(κ) be the number of queries to the DVGen oracle.

Game 0: The original designated-verifier-unforgeability game.
Game 1: As Game 0, but we modify O1 as follows. We use Cgu

κ to denote a
group unforgeability challenger.

O1(1κ, n) : Run (gpk, gok)← Cgu
κ , set gsk← ⊥ , (crs, τ) ← Π.E1(1κ), set

gpk′ ← (gpk, crs), τ ′ ← (gpk′, gok, gsk, τ) and return (gpk′, gok, gsk, τ ′).

Then, we simulate all queries to Sig and Key by forwarding them to Cgu
κ .

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].

Prismacloud Deliverable D5.9

95 of 100

Game 2: As Game 1, but we guess the index v? that the adversary will attack.
Transition - Game 1 → Game 2: The success probability in Game 2 is the same

as in Game 1, unless our guess is wrong. That is Pr[S2] = Pr[S1] · 1/q.
Game 3: As Game 2, but in the query to DVGen for user v? we engage with

an EUF-CMA challenger Cf
κ, obtain a public key pk and return vpkv? ← pk.

Furthermore, the queries to Sim for user v? are simulated without vskv? by
using the Sign oracle provided by Cf

κ.
Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S3] = Pr[S2].
Game 4: As Game 3, but for every output of the adversary, we obtain (σR, σV)←

Π.E2(crs, τ, (m?, pk, vpkv?), π). If the extractor fails, we abort.
Transition - Game 3 → Game 4: The success probability in Game 2 is the same

as in Game 1, unless the extractor fails, i.e., |Pr[S3]− Pr[S4]| ≤ εext2(κ).

In Game 4 we have two possibilities if A outputs a valid forgery.

1. We extract a signature σR such that RS.Verify(pk,m?, σR) = 1. Since, our
implementation of O1 does the same as what is done in Open and we have
that (u = ⊥ ∨ (u /∈ QKey ∧ @(u,m, ADM) ∈ QSig : m? �

ADM

m)) by definition, we
can compose σ ← ((pk, σG), (σR,⊥)) and return (m?, σ) to Cgu

κ as a forgery
for the group unforgeability game.

2. We extract a signature σV such that Σ.Verify(vpkv? ,m
?, σV) = 1. By defini-

tion, we have that v? /∈ QDVKey ∧ @(v?,m, ADM, ·, ·) ∈ QSim : m? �
ADM

m). Since
m? �

ADM

m also includes the identity, i.e., the case where m? = m, we know that
m? was never queried to the signing oracle provided by Cf

κ and we can output
(m?, σV) as a valid EUF-CMA forgery.

The union bound yields Pr[S4] ≤ εgu(κ) + εf(κ). Furthermore, we have that
Pr[S4] = Pr[S3] · (1 − εext2(κ)), that Pr[S3] = Pr[S2] = Pr[S1] · 1/q, and that
Pr[S0] = Pr[S1]. All in all this yields Pr[S0] ≤ q · (εgu(κ) + εf(κ) + εext2(κ)),
which proves the lemma. ut

Lemma 4. If Π is witness indistinguishable, then Scheme 1 is simulatable.

Proof. We show that the output in the simulatability game is (computationally)
independent of the bit b.

Game 0: The original simulatability game (σ is already independent of b).
Game 1: As Game 0, but we obtain crs for the Π upon Setup from a witness

indistinguishability challenger Cwi
κ instead of internally generating it.

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].
Game 2: As Game 1, but instead of executing Redact inside RoS, we exe-

cute the modified algorithm Redact′ with additional input vskj , which ad-

ditionally computes σV ← Σ.Sign(vskj , m̊) and then computes π as π ←
Π.Proof(crs, (m̊, pk, vpkj), (⊥, σV)).

Transition - Game 1 → Game 2: A distinguisher D1→2 is a distinguisher for
adaptive witness indistinguishability of the Π, i.e., |Pr[S3]−Pr[S2]| ≤ εwi(κ).

Prismacloud Deliverable D5.9

96 of 100

In Game 2, Redact′ and Sim are identical, i.e., RoS is independent of b. Thus,
the adversary has no advantage in winning the game, i.e., Pr[S2] = 1/2, which
yields Pr[S0] ≤ 1/2 + εwi(κ). ut

Lemma 5. If GS is anonymous and RS is unforgeable, then Scheme 1 is signer
anonymous.

Proof. We construct an efficient reduction R which turns an efficient signer-
anonymity adversary Asa into an efficient adversary A against anonymity of the
underlying GS. R obtains (gpk, gsk) from the challenger Ca

κ of the anonymity
game of GS and completes the setup as in the original scheme. R simulates the
Open oracle by using the Open oracle provided by Ca

κ and startsAsa on (gpk′, gsk).
If Asa eventually outputs b?, then R outputs b? to Ca

κ. By the RS unforgeability,
the simulation of the Open oracle is computationally indistinguishable from a
real game. The reduction succeeds with non-negligible probability whenever Asa

succeeds with non-negligible probability. ut

Lemma 6. If RS is private, then Scheme 1 is private.

Proof. We prove privacy using a sequence of games, where we let q ≤ poly(κ) be
the number of queries to the Ch oracle.

Game 0: The privacy game with bit b = 0.
Game 1` (1 ≤ ` ≤ q): As Game 0, but we set b = 1 for the first ` queries to

Ch.
Transition - Game 0 → Game 11: A distinguisher between Game 0 and Game

11 is a distinguisher for the RS privacy game. To show this, we engage
with an RS privacy challenger Cp

κ in the first call to Ch, obtain pk, com-
pute σG ← GS.Sign(gski, pk), (m̊, σ̊R) ← Cp

κ.LoRRedact((m0,MOD0, ADM0),
(m1,MOD1, ADM1)), as well as π ← Π.Proof(crs, (m̊, pk, vpkj), (̊σR,⊥)), and
return (m̊, σ, ρ) = (m, (pk, σG), ((pk, σG), π)). Depending on the bit chosen
by Cp

κ, we either simulate Game 0 or Game 11.
Transition - Game 1` → 1`+1 (1 ≤ ` < q) : The answers of the Ch oracle for the

first ` queries are already simulated for b = 1. As above, a distinguisher
between Game 1` and Game 1`+1 is a RS privacy distinguisher.

In Game 1q we have a simulation for bit b = 1. We can bound probability
to distinguish the simulations for b = 0 and b = 1 by |Pr[S1q] − Pr[S0]| ≤
q · εp(κ), which shows that the advantage to win the privacy game is bounded
by 1/2 + q · εp(κ). ut

C Proof of Theorem 2

Subsequently, we show that Theorem 2 holds by proving Lemma 7-12.

Lemma 7. If GS is correct, RS is correct and adapts signatures, Σ is correct,
and Π is complete, then Scheme 2 is also correct.

Prismacloud Deliverable D5.9

97 of 100

Lemma 7 straight-forwardly follows from inspection; the proof is omitted.

Lemma 8. If GS is traceable and RS is unforgeable, then Scheme 2 is group
unforgeable.

Lemma 8 can be proven identically as group unforgeability is proven in the
previous section and is therefore omitted.

Lemma 9. If Π is weakly simulation sound extractable, Σ is EUF-CMA secure,
RS adapts signatures, Scheme 2 is group unforgeable, and the DL assumption
holds in G, then Scheme 2 is also designated-verifier unforgeable.

Proof. We subsequently prove designated-verifier unforgeability using a sequence
of games. First, we define the opener O = (O1, O2) as follows.

O1(1κ, n) : Run (gpk, gok, gsk) ← GS.KeyGen(1κ, n), (crs, τ)← Π.S1(1κ), set
gpk′ ← (gpk, crs), τ ′ ← (gpk, gok, gsk, τ), and return (gpk′, gok, gsk, τ ′).

O2(τ, DVK,m?, ρ?) : Parse σ as ((pk, σG), σ) and return u ← GS.Open(gok,
pk, σG).

The tuple (gpk′, gok, gsk) contained in the output of O1 is computationally indis-
tinguishable from the output of Setup under the simulation-CRS indistinguisha-
bility of the proof system. From now on we will simulate all proofs, i.e., replace
all calls to Π.Proof(crs, x, w) by Π.S2(crs, τ, x).

What remains is to show that—using O—the success probability of every
PPT adversary following strategy (1) in the designated-verifier unforgeability
game is negligible in the security parameter. We do so by using a sequence of
games where we let qSim ≤ poly(κ) be the number of queries to the Sim oracle
and q ≤ poly(κ) the number of users in the system.

Game 0: The original designated-verifier unforgeability game.
Game 1: As Game 0, but we modify O1 as follows, where Cgu

κ denotes a group-
unforgeability challenger (note that we can assume that all required accu-
mulator public keys are obtained from collision freeness challengers as all
algorithms also run without secret keys without affecting the output distri-
bution of the algorithms):

O1(1κ, n) : Run (gpk, gok)← Cgu
κ , set gsk← ⊥ , (crs, τ)← Π.S1(1κ),

gpk′ ← (gpk, crs), τ ′ ← (gpk, gok, gsk, τ), and return (gpk′, gok, gsk, τ ′).

Furthermore, whenever the adversary queries Sig or Key, we use the oracles
provided by Cgu

κ to obtain the required group signatures and keys, respec-
tively.

Transition - Game 0 → Game 1: This game change is conceptual and Pr[S1] =
Pr[S0].

Game 2: As Game 1, but whenever the adversary outputs a forgery so that
pkΣ ·pk′ corresponds to a key pkΣ

R used in a Sim oracle call we check whether
the signed accumulator value (used to encode the message) is still the same
as the one signed in Sim and abort if so.

Prismacloud Deliverable D5.9

98 of 100

Transition - Game 1 → Game 2: If we abort, we have a collision for one of the
accumulators. That is, |Pr[S1]− Pr[S2]| ≤ qSim · εcf(κ).

Game 3: As Game 2, but inside Sim we obtain pkΣ

R from an EUF-CMA chal-
lenger of Σ and obtain the required signatures inside RS.Sign using the Sign
oracle provided by the challenger.

Transition - Game 2 → Game 3: This change is conceptual: Pr[S2] = Pr[S3].7

Game 4: As Game 3, but we guess the index v? that the adversary will attack.
If our guess is wrong, we abort.

Transition - Game 3 → Game 4: The success probability in Game 4 is the same
as in Game 3, unless our guess is wrong. That is Pr[S4] = Pr[S3] · 1/q.

Game 5: As Game 4, but in the query to DVGen for user v? we engage with an
EUF-CMA challenger Cf

κ, obtain a public key pk and return vpkv? ← pk.
Transition - Game 4 → Game 5: This change is conceptual, i.e., Pr[S4] = Pr[S5].
Game 6: As Game 5, but we further modify O1 as follows, where Cgu

κ denotes
a group-unforgeability challenger:

O1(1κ, n) : Run (gpk, gok)← Cgu
κ , set gsk← ⊥, (crs, τ, ξ)← Π.S(1κ) ,

gpk′ ← (gpk, crs), τ ′ ← (gpk, gok, gsk, τ, ξ), and return (gpk′, gok, gsk,
τ ′).

Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].
Game 7: As Game 6, but for every output of the adversary, we check whether

pkR corresponds to a key obtained from a challenger in Sim and continue
if so. Otherwise, we obtain (sk′, vskv?) ← Π.E(crs, ξ, (pk′, vpkv?), π). If the
extractor fails, we abort.

Transition - Game 6 → Game 7: Both games proceed identically, unless the ex-
tractor fails, i.e., |Pr[S6]− Pr[S7]| ≤ εext(κ).

If the adversary outputs a forgery (m?, ρ?, v?), where ρ? = (((pkΣ, pkΛ), σG), pk′,
σ̊′R, π), we check whether we have extracted vskv? such that Σ.VKey(vpkv? , vskv?) =
1. If so, we choose a random message m in the message space of Σ, compute
σ ← Σ.Sign(vskv? ,m) and output (m,σ) as an EUF-CMA forgery for Σ. Other-
wise, we have extracted a secret key sk′ such that RS.VKey(pk′, sk′) = 1. Then,
we have that Verify(gpk, vpkv? ,m

?, ρ?) = 1 by definition. If pkΣ · pk′ corresponds
to a key pkΣ

R used in Sim, we can output the Σ-signature σ on the accumulator
together with the accumulator as an EUF-CMA forgery to one of the challengers
from Sim. If not, we can obtain (pk, σ̊′′R)← RS.Adapt(pkΣ · pk′,m?, σ̊′R,−sk′) and
output (m?, σ) = (m?, (((pkΣ, pkΛ), σG), (̊σ′′R,⊥))) to break group unforgeability.
Note that our implementation of O2 does the same as what is done in Open and
we have that (u = ⊥ ∨ (u /∈ QKey ∧ @(u,m, ADM) ∈ QSig : m? �

ADM

m)) by defi-
nition. Also note that Game 2 and Game 3 resemble the proof strategy for RS
constructions following the paradigm from [DPSS15]. Taking the union bound,
the success probability in Game 7 is bounded by Pr[S7] ≤ εgu(κ)+(1+qSim)·εf(κ).

7 Note that the changes in Game 2 and Game 3 resemble the unforgeability proof
strategy of [DPSS15, Scheme 1]. For further details, and, in particular for the collision
freeness notion of accumulators, see [DPSS15].

Prismacloud Deliverable D5.9

99 of 100

Thus, we have that Pr[S0] ≤ q · (εgu(κ) + (1 + qSim) · εf(κ) + εext(κ)) + qSim · εcf(κ)
which concludes the proof. ut
Lemma 10. If Π is witness indistinguishable, and RS adapts signatures, then
Scheme 2 is simulatable.

Proof. We prove that the output in the simulatability game is (computationally)
independent of the bit b.

Game 0: The original simulatability game (σ is already independent of b).
Game 1: As Game 0, but we obtain crs for the Π upon Setup from a witness

indistinguishability challenger Cwi
κ instead of internally generating it.

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].
Game 2: As Game 1, but instead of Redact inside RoS we execute the modified

algorithm Redact′ which runs on additional input vskj and computes π as

π ← Π.Proof(crs, (pk′, vpkj), (⊥, vskj)).

Transition - Game 1 → Game 2: A distinguisher D1→2 is a distinguisher for
adaptive witness indistinguishability of Π, i.e., |Pr[S2]− Pr[S1]| ≤ εwi(κ).

Game 3: As Game 2, but we further modify Redact′ so that it additionally
takes ADM as input and works as follows.

Redact′(gpk, vpkj ,m, σ,MOD, vskj , ADM) : Parse σ as ((pk, σG), (σR, RED))
and return (m̊, ρ), where

skR ←R H, pkR ← µ(skR), pk′ ← pk−1 · µ(skR)

((m, σ′R), RED)← RS.Sign((skR,⊥, pkΛ),m, ADM) ,

((m̊, σ̊′R), ·)← RS.Redact(pkR,m, σ
′
R,MOD, RED),

π ← Π.Proof(crs, (pk′, vpkj), (⊥, vskj)), and ρ← (σ, pk′, σ̊′R, π).

Transition - Game 2 → Game 3: Under adaptability of the RS, Game 2 and
Game 3 are perfectly indistinguishable, i.e., Pr[S3] = Pr[S2].

In Game 3, Redact′ and Sim are identical; RoS is thus independent of b. Thus,
the adversary has no advantage in winning the game, i.e., Pr[S3] = 1/2. Further,
we have that Pr[S0] = Pr[S1] ≤ Pr[S2] + εwi(κ), and that Pr[S3] = Pr[S2], which
yields Pr[S0] ≤ 1/2 + εwi(κ). ut
Lemma 11. If GS is anonymous, then Scheme 2 is signer anonymous.

The proof is identical to the proof of Lemma 5 and therefore not restated here.

Lemma 12. If RS is private and adapts signatures, then Scheme 2 is private.

Proof. The proof strategy is identical to the privacy proof in the previous sec-
tion. We however, use the following hybrid to interpolate between the games:
We engage with an RS privacy challenger Cp

κ in the ` + 1st call to Ch, obtain
pk, compute σG ← GS.Sign(gski, pk), (m̊, σ̊R)← Cp

κ.LoRRedact((m0,MOD0, ADM0),
(m1,MOD1, ADM1)), sk′←R H, pk′ ← µ(sk′), (pkR, σ̊

′
R) ← RS.Adapt(pk, m̊, σ̊R, sk′),

as well as π ← Π.Proof(crs, (pk′, vpkj), (sk′,⊥)), and return (m̊, σ, ρ) = (m̊, (pk,

σG), ((pk, σG), pk′, σ̊′R, π)) Then, depending on the bit chosen by Cp
κ, we either

simulate Game 0 or Game 11 (resp. 1` or Game 1`+1). ut

Prismacloud Deliverable D5.9

100 of 100

	Executive Summary
	Introduction
	Scope of the Document
	Relation to Other Project Work
	Structure of the Document

	The FLEXAUTH Tool
	Overview
	Tool Architecture
	Component Model
	Software Implementation
	Services Based on FLEXAUTH
	Terms and Definitions
	Signer
	Redactor/Sanitizer
	Issuer
	Opener
	Linker
	Verifier
	Message
	Accumulator
	Group
	Redaction
	Sanitization
	Signature Scheme
	Signature
	Group Signature
	Selective Disclosure Token
	Redacted Signature
	Sanitized Signature
	Group Signature Scheme
	Redactable Signature Scheme
	Sanitizable Signature Scheme
	Admissible Changes
	Modification Instructions
	Redacted Message
	Sanitized Message
	Verification key
	Signing key
	Sanitization key
	Issuing Key
	Opening Key
	Linking Key
	Controllable Linkability

	Malleable Signatures Library
	Abstract Description
	Architecture and Design of the Library

	Group Signatures Library
	Abstract Description
	Architecture and Design of the Library

	Recommendations

	The FLEXAUTH Tool in the Application Context
	The eHealth Pilot
	The Smart City Pilot
	Research on Additional Applications
	Cryptographically Enforced Four-Eyes Principle
	Accountable and Privacy Preserving Workflows

	Extending Redactable Signatures with Additional Privacy Features

	Conclusion
	List of Acronyms
	List of Figures
	Bibliography
	Appendix

