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Executive Summary

Prismacloud aims at bringing novel cryptographic concepts and methods to practical
application to improve the security and privacy of cloud based services and make them
usable for providers and users.

The purpose of this report is to document the progress on research activities within the
Task 4.3 Privacy enhancing cryptography in the second period (i.e., up to M30) of
the Prismacloud project. We thereby focus on privacy-preservation for users of cloud
services as well as service providers. In particular, we will improve and propose privacy-
enhancing cryptography such as signature schemes for constructing anonymous credentials
as well as group signature schemes for the cloud environment with a focus on user’s access
privacy in authentication and authorization, private billing for the use of cloud services
as well as privacy for cloud providers enabling them to selectively prove properties about
their certified infrastructure without disclosing the blueprint of their infrastructure.

To this end, this task conducts research in the following fields.

4.3.1 Privacy-Preserving Cryptography for the Cloud. In this task, we investigate
privacy-preserving cryptographic protocols and in particular anonymous credential
systems and group signature schemes. Most such privacy preserving schemes as (up-
datable/stateful) anonymous one-show/multi-show credentials, or group signatures
are obtained by means of (generic) transformations from signature schemes enjoying
specific properties (such as blind/partially blind signing support, support for sign-
ing commitments, randomizability and compatibility with efficient zero-knowledge
proofs). We will on the one hand perform research in anonymous credential sys-
tems that do not follow the traditional proof-of-knowledge paradigm, but are based
on alternative constructions (such as ideas from malleable signatures), which make
them conceptually simpler as well as to integrate additional features such as a state
and updateability. Furthermore, we will investigate these approaches focusing on
identifying difficulties and trade-offs that have to be made when targeting for imple-
mentations in resource constrained hardware. In this deliverable we present three
publications related to this task.

4.3.2 Certified and Verifiable Infrastructure for Cloud Services. In this task we
develop a signature scheme on committed graphs with a zero-knowledge proof system
and optimize it for practical use in virtualized infrastructures. Such a scheme allows
an auditor to analyze the configuration of a cloud, and issue a signature on its
topology. The signature encodes the topology as a graph in a special way, such
that the cloud provider can use it to prove in zero-knowledge high-level security
properties such as isolation of tenants to verifiers, such as the tenants, without
disclosure of secret information. By that the verifying tenant can be confident that
the infrastructure is configured securely as promised by the provider and be assured
at the same time that no information about his resource pool is leaked to other
tenants. In this deliverable, we present research to establish hardware-protected
minimal functional units that can then be certified as trustworthy vertices in the
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topology certification.
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1 Introduction

1.1 Scope of this Document

The objective of this task is to conduct research in privacy-enhancing cryptographic
schemes for application in privacy-preserving authorisation, privacy preserving (aggre-
gated) billing for the privacy protected service usage in the cloud and for structural in-
tegrity and certification of virtualised infrastructures. To this end, Task 4.3 conducts
research on the following tasks:

Task 4.3.1 Privacy-Preserving Cryptography for the Cloud

Task 4.3.2 Certified and Verifiable Infrastructure for Cloud Service

In the following sections we describe the research goals of the respective subtasks.

1.1.1 Privacy-Preserving Cryptography for the Cloud

For many services in the cloud, it is important that users are given means to prove that they
are authorised to perform or delegate a certain task. However, it is usually not necessary
that users reveal their full identity to the cloud, but only to prove by some means that
they are authorised, e.g., possess certain rights. Traditional access mechanisms thereby
typically reveal the user’s identity and additional information (e.g., certain attributes
about the user). When using a privacy-friendly means to authentication, i.e., minimising
the data disclosed to the service or even anonymous authentication, the the main obstacle is
that a cloud provider must still be cryptographically reassured that the user is authorised.

Anonymous credential (AC) systems have proved to be an important and versatile con-
cept for such privacy-preserving and data minimising applications, as they allow users to
authenticate in an anonymous way without revealing any more information than neces-
sary to be authenticated at a service. The underlying cryptographic building blocks of
state-of-the-art anonymous credential systems moreover can be used in the design of var-
ious related concepts such as group signatures, privacy protecting multi-coupon systems,
anonymous subscriptions, e-cash systems and many more.

While the design of anonymous credential systems in their early days has been quite
ad-hoc, many more recent works in the field propose a quite generic composition of a
few building blocks with specific properties. Recently, also some results on instantiating
various types of anonymous credentials (typically with some restrictions) from so called
malleable signature schemes have been proposed (e.g., [BCKL08a, CKLM13]). Some of
these tools are very interesting, but often they lack in efficiency.

We improve the state-of-the-art in anonymous credential system and group signature
schemes with a particular focus on their application in cloud computing services.
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1.1.2 Certified and Verifiable Infrastructure for Cloud Service

For services in the cloud, it is imperative that users can gain assurance that the cloud
is configured securely and fulfils their security requirements. The user may, for instance,
require that their resources are well isolated from all other tenants, that their resources
fulfil deployment requirements, or that dependencies of their services are covered. These
security requirements on confidentiality, integrity and availability are in tension with
the cloud provider’s and other tenants requirements on the confidentiality of the over-
all system. Hence, there are requirements on the verification of clouds as well as on their
confidentiality-preserving security assurance.

Both aspects are with respect to a system-of-systems model of the infrastructure and a
graph representation to abstract away the low-level details of the cloud configuration,
that is, of hypervisors and management hosts. While there has been a body of research on
modelling clouds in graph representations as well as dedicated information flow analysis
or model checking on them, recent verification approaches investigated in Prismacloud
focus on dynamically changing clouds and graph model checking as tool of choice for the
analysis.

For the certification and security assurance towards a verifier, we base our research on a
legacy of anonymous credential (AC) systems. Whereas traditional anonymous credential
systems focus on the certification and proof of knowledge of integers and bit strings as
message space, the research in Prismacloud focuses on certification and proof of knowl-
edge of entire graphs. Hence, this thrust of research establishes graph signatures as a new
cryptographic primitive and enables versatile and efficient signing for applications in the
cloud.

We aim at creating a new graph signature scheme with a wide range of applications, which
shall be efficient enough in its signing and proof of knowledge operations to satisfy the
needs of large dynamically changing infrastructures. This research seeks to enable a cloud
provider to obtain a graph signature certifying the current state of a cloud from an auditor,
which the cloud provider can subsequently use to prove to multiple tenants that their
security requirements are fulfilled without disclosing the blueprint of the infrastructure.

1.2 Relation to Other Project Work

This deliverable is connected to the following Prismacloud deliverables:

• Deliverables D4.6 and D4.7 in WP 4: This deliverable builds upon the results pre-
sented in D4.6 as well as D4.7 and presents additional research results.

• Deliverables D5.6, D5.7 and D5.9 in WP5: This deliverable is directly related to the
deliverables in WP5 concerned with the description of the Prismacloud tools. In
particular, results from Task 4.3.1 is integrated within the FLEXAUTH tool and the
research in Task 4.3.2 is at the heart of the TOPOCERT tool.
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• Deliverables D6.4, D6.5 and D6.6 in WP 6: This deliverable is also related to soft-
ware implementation of cryptographic primitives and protocols as well as their doc-
umentation in WP 6. In particular, implementations of the core cryptographic con-
cepts dealt within this line of deliverables will be at the heart of the FLEXAUTH
and TOPOCERT tools and consequently their implementation. WP 6 deliverables
also document how this cryptographic functionality can be used within the Pris-
macloud services.

1.3 Structure of the Document

This document is structured as follows. In Section 2 we present research on privacy-
preserving cryptography for the cloud. In particular, we present three research contribu-
tions dealing with so called structure-preserving signature schemes on equivalence classes
and their applications to multi-show attribute-based anonymous credential (ABC) systems
as well as group signatures. Moreover, we present research on the novel paradigm of wit-
ness encryption and its applications to privacy enhancing cryptography. In Section 3, we
present research on certified and verifiable infrastructure for cloud services. In particular,
creating trustworthy compartments in virtualized infrastructures.

Section 4 presents a brief overview of all the research papers presented in this report and
finally Section 5 concludes this report.
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2 Privacy-Preserving Cryptography for the Cloud

In this task, we investigate privacy-preserving cryptographic primitives and protocols and
their underlying signatures schemes. In particular, we study multi-show attribute-based
anonymous credential (ABC) systems and group signature schemes which enable more
privacy-friendly cloud applications. Moreover, we study the novel paradigm of witness
encryption with respect to efficient constructions and applications to privacy enhancing
cryptography.

In particular, in Section 2.1 we investigate structure-preserving signatures on equivalence
classes (SPS-EQ) and their application to efficient multi-show attribute-based credential
(ABC) systems.

In Section 2.2 we present a novel approach to construct group signatures from SPS-EQ.
This yields extremely efficient group signatures and outperforms the fastest constructions
providing anonymity in the BSZ model known to date.

In Section 2.3 we present an efficient instantiation of the novel primitive of witness en-
cryption for a restricted class of languages which has interesting applications to privacy-
enhancing cryptography.

We want to stress that we reuse large parts of the introductions of the respective papers
(verbatim) for the overviews presented below. Also note that the following sections are
intended to give a high-level overview of our results. For a more formal treatment we refer
the reader to the full papers which can be accessed via the Prismacloud website.

2.1 Structure-Preserving Signatures on Equivalence Classes and Constant-
Size Anonymous Credentials

Digital signatures are an important cryptographic primitive that provide a means for
integrity protection, non-repudiation and authenticity of messages in a publicly verifiable
way. In most signature schemes, the message space consists of integers in Zord(G) for some
group G, or of arbitrary strings mapped to either integers in Zord(G) or elements of a group
G via a cryptographic hash function. In the latter case, the hash function is often modeled
as a random oracle (thus, one effectively signs random group elements).

Structure-preserving signature (SPS) schemes [Fuc09, AHO10, AFG+10, AGHO11, ACD+12,
AGOT14a, AGOT14b, BFF+15, KPW15, Gha16] sign group elements without requiring
any prior encoding. In particular, SPS are defined over two groups G1 and G2, equipped
with a bilinear map (pairing), and messages are vectors of group elements (from either G1

or G2, or both). Moreover, public keys and signatures also consist of group elements only
and signatures are verified by deciding group membership of their elements and evaluating
the pairing on elements from the public key, the message and the signature. Fully SPS
schemes [AKOT15, Gro15b] also require the secret key to consist of group elements.

Randomization is a useful feature of signature schemes that lets anyone transform one
signature into a new one that looks like a freshly generated signature on the same message.
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There have been various constructions of randomizable signatures [CL03, CL04, BBS04a,
Wat05, PS16] and SPS schemes supporting some types of randomization (inner, sequential,
etc.) [AFG+10, AGOT14b].

In this paper, we extend this randomization, in particular, we construct SPS schemes
that in addition to randomizing signatures also enable randomization of the signed mes-
sages in particular ways, and adaptation of the corresponding signatures. As we show,
such signature schemes are particularly interesting for applications in privacy-enhancing
cryptographic protocols.

2.1.1 Previous Work

Signatures. Blazy et al. [BFPV11] introduce a new primitive, termed signatures on
randomizable ciphertexts for which they modify Waters’ signature scheme [Wat05]. Given
a signature on a ciphertext, anyone can randomize the ciphertext and adapt the signature
accordingly, knowing neither signing key nor encrypted message. Their construction is
only practical for very small message spaces, which makes it unsuitable for our purposes.

Another related approach is the proofless variant of the Chaum-Pedersen signature [CP93],
used for self-blindable certificates by Verheul [Ver01]. The certificate as well as the initial
message can be randomized using the same scalar, preserving the validity of the certificate.
This approach works for the construction in [Ver01], but (as also observed in [Ver01]) it
is not a secure signature scheme due to its homomorphic property and the possibility of
efficient existential forgeries.

Linearly homomorphic signatures [BFKW09, CFW12, Fre12] allow to sign any subspace
of a vector space by publishing a signature for every basis vector with respect to the
same (file) identifier; this identifier “glues” together the single vectors (of a file). Given a
sequence of scalar/signature pairs (βi, σi)i∈[`] for vectors ~vi (with the same identifier), one
can publicly compute a signature for the vector ~v =

∑
i∈[`] βi~vi.

If one uses a different identifier for every signed vector ~v then such signatures would
support a functionality similar to signature adaptation in SPS-EQ, that is, publicly com-
pute signatures for vectors ~v′ = β~v (although they are not structure-preserving). Vari-
ous constructions also provide a privacy feature called strongly/completely context-hiding
[ALP12, ALP13], requiring that a signature resulting from homomorphic operations is
indistinguishable from a fresh one. Nevertheless, homomorphic signatures do not help in
our context: for SPS-EQ unforgeability, we must prevent combination of signatures on
several (independent) vectors; so every vector must be assigned a unique identifier. Then
however, our unlinkability notion cannot be satisfied as every signature can be linked to
its initial signature via the unique identifier. The same arguments also apply to structure-
preserving linearly homomorphic signatures [LPJY13]. Homomorphic signatures support-
ing richer classes of admissible functions (beside linear ones) have also been considered,
but are not applicable in our context either (cf. [ABC+12, ALP12] for an overview). We
note that the general framework of P -homomorphic signatures [ABC+12, ALP12] is re-
lated to our approach in terms of unforgeability and privacy guarantees, but there are no
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existing instantiations for the functionality that we require (and we find our formalization
more natural).

Chase et al. [CKLM14] introduce malleable signatures that let one derive, from a signature
on a message m, a signature σ′ on m′ = T (m) for an “allowable” transformation T . This
generalizes signature schemes, including quotable [ABC+12, ALP13] or redactable signa-
tures [SBZ02, JMSW02] with an additional context-hiding property. Letting messages be
pseudonyms and allowable transformations map one pseudonym to another one, the au-
thors use malleable signatures to construct anonymous credential systems and delegatable
anonymous credential systems [BCC+09]. The general construction in [CKLM14] however
relies on malleable zero-knowledge proofs [CKLM12] and is not practically efficient—even
when instantiated with the Groth-Sahai proof system [GS08]. Although the above frame-
work is conceptually totally different from our approach, we note that SPS-EQ can be
cast into the definition of malleable signatures: the evaluation algorithm takes only a
single message vector with corresponding signature and there is a single type of allow-
able transformation. However, our construction is practical and moreover Chase et al.
[CKLM14] only focus on transformations of single messages (pseudonyms) and do not
consider multi-show ABCs, which is the main focus of our construction.

Set Commitments. The best-known approach for commitments to (ordered) sets are
Merkle hash trees (MHTs) [Mer88], where for a set S the commitment size is O(1) and the
opening of a committed set element is of size O(log |S|). Boneh and Corrigan-Gibbs [BC14]
propose an alternative MHT construction using a novel commitment scheme based on a
bivariate polynomial modulo RSA composites. In contrast to MHTs, their construction
supports succinct proofs of knowledge (PoK) of committed values.

Kate, Zaverucha and Goldberg [KZG10] introduce polynomial-commitment schemes that
allow to commit to polynomials and support (batch) openings of polynomial evaluations.
They can be used to commit to ordered sets (by fixing an index set) or to sets by identifying
committed values with roots. Their two constructions are analogues to DL and Pedersen
commitments and have O(1)-size commitments and openings. Recently, Camenisch et al.
[CDHK15] proposed a variant of the Pedersen version from [KZG10]. A related commit-
ment scheme, called knowledge commitment, was proposed by Groth [Gro10] and later
generalized by Lipmaa [Lip12].

Other commitments to ordered sets are generalized Pedersen [Ped92] or Fujisaki-Okamoto
[FO98] commitments. Both have commitment size O(1), but opening proofs are of size
O(|S|). For completeness, let us also mention vector commitments [CF13], which allow
to open specific positions as well as subsequent updates at specific positions (but do not
necessarily require hiding). Zero-knowledge sets [MRK03] are another primitive in this
context. They allow to commit to a set and to perform membership and non-membership
queries on values without revealing any further information on the set. In [DHS15], it was
shown that zero-knowledge sets imply commitments in a black-box way.

ABCs. Signatures providing randomization features together with efficient zero-knowledge
PoKs of committed values can be used to generically construct ABC systems. The most
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prominent example are CL credentials [CL03, CL04], based on Σ-protocols. With the
advent of Groth-Sahai proofs [GS08], which provide efficient non-interactive proofs in
the CRS model without random oracles, various constructions of non-interactive anony-
mous credentials [BCKL08b, ILV11] and delegatable (hierarchical) anonymous credentials
[BCC+09, Fuc11] have been proposed. These have a non-interactive showing protocol,
that is, the show and verify algorithms do not interact when demonstrating credential
possession (also the recent model for conventional ABCs in [CKL+14] demands showings
to be non-interactive). We note that although such credential systems with non-interactive
protocols extend the scope of applications of anonymous credentials, the most common
use case (i.e., authentication and authorization), essentially relies on interaction (to pro-
vide freshness/liveness). We emphasize that our goal is not to construct non-interactive
anonymous credentials.

2.1.2 Contribution

Our contributions can be broken down as follows: (1) Introduction and instantiation of
SPS on equivalence classes (SPS-EQ), which are defined on group element vectors; (2)
a randomizable set commitment scheme that enables constant-size opening of subsets of
the committed set; and building on these primitives (3) a new construction approach for
multi-show attribute-based anonymous credentials, which we efficiently instantiate and
analyze in a comprehensive security model we propose.

Structure-Preserving Signature Scheme on Equivalence Classes. Inspired by
randomizable signatures, we introduce a variant of SPS. Instead of signing message vectors
as in previous SPS schemes, our variant signs classes of a projective equivalence relation
R defined over G` with ` > 1. These classes are lines going through the origin and are
determined by the mutual ratios of the discrete logarithms of the vector components. By
multiplying each component by the same scalar, a different representative of the same
equivalence class is obtained. If the DDH assumption holds in group G then it is hard to
decide whether two vectors belong to the same equivalence class.

In SPS-EQ an equivalence class is signed by signing an arbitrary representative of the
class. From this signature one can later derive a signature for any other representative
of the same class, without having access to the secret key. Unforgeability for SPS-EQ is
defined with respect to classes. Thus, after obtaining signatures on representatives of its
choice, no adversary should be able to compute a signature on a representative of a class
that is different from the ones signed. We also require that adaptation of signatures leads
to freshly distributed ones; in combination with unlinkability of equivalence classes this
implies the following: given a representative and a signature on it, a random representative
of the same class and an adapted signature on it are indistinguishable from a completely
random message and a fresh signature on it.

We present a definitional framework for SPS-EQ including game-based security defini-
tions and present an efficient construction whose signatures are short and their length
is independent of the message-vector length `. We prove our construction secure in the
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generic-group model [Sho97].

Set Commitments. We propose a new type of commitment scheme that lets one com-
mit to sets and open arbitrary subsets. We first propose a model for this primitive and
then give an efficient construction, which we prove secure in this model. It lets one com-
mit to subsets of Zp and a commitment and a subset-opening both consist of a single
bilinear-group element. Our scheme is computationally binding, perfectly hiding, and
computationally subset-sound, meaning that given a commitment to a set S it is hard to
produce a subset-opening for some T 6⊆ S.

We prove security under a generalization of the strong Diffie-Hellman assumption [BB04].

The scheme also enables commitment randomization, which is compatible with the ran-
domization of our SPS-EQ scheme (i.e., multiplication by a scalar). Randomization is
perfect and the witness used for subset opening can be adapted accordingly. This property
has not been achieved by existing constructions without relying on costly zero-knowledge
proofs of randomization.

A Multi-Show Attribute-Based Anonymous Credential System. Attribute-based
anonymous credentials provide means for anonymous authentication. A credential system
is a multi-party protocol involving a user, an organization (or issuer) and a verifying party.
The user can obtain a credential on multiple attributes, such as her nationality or age,
from an organization and present the credential to some verifier later on, revealing only
certain attributes. While not learning any information about the user (anonymity), the
verifier can still be sure that presented information (the shown attributes) is authentic
(unforgeability). In a multi-show credential system, a user obtains a credential from an or-
ganization, typically in a non-anonymous way, and can later perform an arbitrary number
of unlinkable showings.

We propose a new way of building multi-show attribute-based anonymous credentials
(often called Privacy-ABCs; we simply write ABCs) from SPS-EQ and set commitments.
Using our instantiations, we construct the first standard-model multi-show ABC with
anonymity holding against malicious organization keys.

An SPS-EQ scheme allows to randomize a vector of group elements together with a sig-
nature on it, a property we use to achieve unlinkability of credential showings. We use set
commitments to commit to a user’s attributes. To issue a credential, the issuer signs a
message vector containing this set commitment; the credential is essentially this signature
together with its message. During a showing, a subset of the issued attributes can then
be opened. Unlinkability of showings is achieved via the rerandomization properties of
both the signature scheme and the set-commitment scheme, whose rerandomizations are
compatible with each other. Furthermore, to thwart replay attacks of showings, we add a
short constant-size proof of knowledge, which guarantees freshness.

We emphasize that our approach to constructing ABCs differs considerably from existing
ones, as we do not use zero-knowledge proofs to selectively disclose attributes during
showings. This makes constant-size showings possible, as achieved by our construction.
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In particular, the size of credentials as well as the bandwidth required when showing a
credential are independent of the number of possible attributes as well as those contained
in the credential; it is a small constant number of group elements. This is the first ABC
system with this feature. We note that Camenisch et al. [CDHK15] recently proposed an
approach with identical asymptotic complexity.

We introduce a game-based security model for ABCs in the vein of the Bellare, Shi and
Zhang’s [BSZ05] model for group signatures and prove our ABC system secure in it. We
note that there are no other comprehensive models for attribute-based credential systems
(apart from independently developed very strong simulation-based notions in [CKL+14,
CDHK15]). Our model considers replays and provides a strong form of anonymity against
organizations that may generate malicious keys—both of which are not considered by
earlier models. Replay attacks have often been considered an implementation issue, but
we believe that such attacks should already be considered in the formal analysis, avoiding
from the beginning problems that might later appear within an implementation.

We note that the independently proposed formal model by Camenisch et al. [CKL+14]
and the ABC construction in [CDHK15]—using a different model—do consider replays
and malicious keys too, although the former in a seemingly weaker sense and the latter
only assuming a CRS.

Finally, we discuss a variant of our scheme with smaller organization key sizes that is
concurrently secure in the CRS model. We provide a comparison of our ABC system to
other existing multi- and one-show ABC approaches.

2.2 Fully-Anonymous Short Dynamic Group Signatures Without En-
cryption

Group signatures, initially introduced by Chaum and van Heyst [CvH91], allow a group
manager to set up a group so that every member of this group can later anonymously sign
messages on behalf of the group. Thereby, a dedicated authority (called opening authority)
can open a given group signature to determine the identity of the actual signer. Group
signatures were first rigorously formalized for static groups by Bellare et al. in [BMW03].
In this setting, all members are fixed at setup and also receive their honestly generated
keys at setup from the group manager. This model was later extended to the dynamic
case by Bellare et al. in [BSZ05] (henceforth denoted by BSZ model), where new group
members can be dynamically and concurrently enrolled to the group. Further, it separates
the role of the issuer and the opener so that they can operate independently. Moreover,
the BSZ model requires a strong anonymity notion, where anonymity of a group signature
is preserved even if the adversary can see arbitrary key exposures and arbitrary openings
of other group signatures. A slightly weaker model, which is used to prove the security
(and in particular anonymity) of the popular BBS group signature scheme was introduced
by Boneh et al. [BBS04b]. This model is a relaxation of the BSZ model, and in particular
weakens anonymity so that the adversary can not request openings for signatures. As
it is common, we refer to this anonymity notion as CPA-full anonymity, whereas we use
CCA2-full anonymity to refer to anonymity in the sense of BSZ.

12 of 38



Report on Privacy-Enhancing Cryptography

2.2.1 Previous Work

Over the years, two main construction paradigms for group signatures have been estab-
lished. The first one is the widely used sign-encrypt-prove (SEP) paradigm [CS97]. Here,
a signature is essentially an encrypted membership certificate together with a signature
of knowledge, where the signer demonstrates knowledge of some signed value in the ci-
phertext [ACJT00, BBS04b, NS04, BSZ05, KY05, DP06, BW07, BW06, Gro07, LPY15,
LLM+16, LMPY16]. As an alternative to this paradigm, Bichsel et al. in [BCN+10]
proposed an elegant design paradigm for group signatures which does not require to en-
crypt the membership certificate to produce signatures. Henceforth we call this paradigm
sign-randomize-proof (SRP). Essentially, they use a signature scheme which supports (1)
randomization of signatures so that multiple randomized versions of the same signature
are unlinkable, and (2) efficiently proving knowledge of a signed value. In their construc-
tion, on joining the group, the issuer uses such a signature scheme to sign a commitment
to the user’s secret key. The user can then produce a group signature for a message
by randomizing the signature and computing a signature of knowledge on the message,
which demonstrates knowledge of the signed secret key. To open signatures, in contrast
to constructions following SEP which support constant time opening by means of de-
crypting the ciphertext in the signature, constructions in this paradigm require a linear
scan, i.e., to check a given signature against each potential user. Bichsel et al. proposed
an instantiation based on the randomizable pairing-based Camensich-Lysyanskaya (CL)
signature scheme [CL04] (whose EUF-CMA security is based on the interactive LRSW
assumption). Recently, Pointcheval and Sanders [PS16] proposed another randomizable
signature scheme (whose EUF-CMA security is proven in the generic group model), which
allows to instantiate the approach due to Bichsel et al. more efficiently. We note that while
these two existing constructions do not explicitly use public key encryption, the required
assumptions for the scheme imply public key encryption. Yet, it seems to be beneficial
regarding performance to avoid to explicitly use public key encryption.

The main drawback of existing constructions following the SRP paradigm is that they rely
on a security model that is weaker than the BSZ model [BSZ05]. In particular, anonymity
only holds for users whose keys do not leak. This essentially means that once a user
key leaks, all previous signatures of this user can potentially be attributed to this user.
Furthermore, the model used for SRP constructions assumes that the opening authority
and the issuing authority are one entity, meaning that the issuer can identify all signers
when seeing group signatures. Both aforementioned weakenings can be highly problematic
in practical applications of group signatures. It is thus a natural question to ask whether
it is possible to prove that constructions following the SRP paradigm provide CPA- or even
CCA2-full anonymity. Unfortunately, for existing constructions, we have to answer this
negatively. Even when allowing to modify the existing constructions in [BCN+10, PS16]
to allow the explicit use of encryption upon joining the group (which might solve the
separability issue regarding issuer and opener), it is easy to see that knowledge of the
user secret key breaks CCA2- as well as CPA-full anonymity for both constructions.1 Since

1Each valid group signature contains a valid randomizable signature on the secret key of the user. While
group signatures only contain a proof of knowledge of the signed secret key, being in possession of secret
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CCA2-full anonymity straight forwardly implies anonymity in the SRP model, this example
confirms that CCA2-full anonymity is a strictly stronger notion. The notion of CPA-full
anonymity is somewhat orthogonal to the anonymity notion used by the SRP model: it
appropriately models the leakage of user secret keys, but restricts the open oracle access.
Yet, in practice it seems that the risk that a user secret key leaks is extremely hard to
quantify, which is why we deem CPA-full anonymity to be more desirable. This is also
underpinned by the fact that—to the best of our knowledge—no attacks arising from the
restriction of the open oracle access in CPA-full anonymity are known.

2.2.2 Contribution

Group signatures have received significant attention from the cryptographic community
and also gain increasing practical relevance due to technological innovations in intelligent
transportation systems (e.g., floating car data, toll systems) as well as public transporta-
tion systems (i.e., smart ticketing), where user privacy is considered to play an important
role (cf. EU Directive 2010/40/EU). These developments make it important to have
particularly efficient group signature candidates at hand. As an illustrative example for
the importance of very fast signature generation and verification times, consider public
transportation system where every user needs to sign on passing a gate.

Despite their increasing practical importance, no progress has been made with respect
to computational efficiency improvements of group signature schemes providing the more
desirable notions of CPA- as well as CCA2-full anonymity within the last decade. The
most efficient schemes known to date are the BBS group signature scheme [BBS04b]
(which achieves CPA-full anonymity) and the XSGS group signature scheme [DP06] (which
achieves CCA2-full anonymity).

We tackle the following open questions, which are of both theoretical and practical interest:

• Is it possible to construct schemes providing the more desirable CPA-full and CCA2-
full anonymity notions, where compelling efficiency is reached by (1) avoiding the
explicit encryption of the membership certificate upon signing, yet (2) allowing to
explicitly use encryption during the joining of a group?

• Is it possible to further push the computational efficiency limits of group signature
schemes providing those more desirable anonymity notions?

We, henceforth, refer to such schemes as “without encryption”.

We answer both questions posed above to the affirmative by contributing a novel approach
to construct group signatures “without encryption”. Our approach is a composition of
structure preserving signatures on equivalence classes (SPS-EQ) [HS14, FHS17] (cf. also
Section 2.1), conventional digital signatures, public key encryption, non-interactive zero-
knowledge proofs, and signatures of knowledge. Although these tools may sound quite

key candidates allows to simply test them using the verification algorithm of the randomizable signature
scheme. This clearly provides a distinguisher against CCA2- as well as CPA-full anonymity.
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heavy, we obtain surprisingly efficient group signatures, which provably provide CCA2-
full anonymity in the strongest model for dynamic group signatures, i.e., the BSZ model.
In doing so, we obtain the first construction which achieves this strong security notion
without an encrypted membership certificate in the signature. In addition to that, we
introduce an even more efficient CPA-fully anonymous variant of our scheme.

We also show how to instantiate our constructions in the random oracle model (ROM) to
obtain particularly efficient schemes. We are thereby able to further push the long stand-
ing computational efficiency limits for both CPA- and CCA2-fully anonymous schemes
regarding signature generation and verification. When comparing to the popular BBS
group signature scheme [BBS04b] (which achieves CPA-full anonymity in the ROM), be-
sides being more efficient we surprisingly even obtain shorter signatures. Ultimately, when
comparing to instantiations in the vein of Bichsel et al. (which provide a less desirable
anonymity notion), our instantiations provide comparable computational efficiency.

2.3 Practical Witness Encryption for Algebraic Languages Or How to
Encrypt Under Groth-Sahai Proofs

Witness encryption (WE) is a recent powerful encryption paradigm introduced by Garg
et al. [GGSW13]. In WE, an encryption scheme is defined for some NP-language L with
witness relation R so that L = {x | ∃ w : R(x,w) = 1}. The encryption algorithm takes
an alleged word x from L (instead of an encryption key) and a message m and produces
a ciphertext c. Using a witness w such that R(x,w) = 1, anyone can decrypt c to obtain
m. Decryption only works if x ∈ L and a ciphertext c hides m if c has been computed
with respect to some x /∈ L.

Constructions of WE. The first construction of WE for any language in NP in [GGSW13]
has been for the NP-complete problem exact cover and uses approximate multilinear maps
(MLMs). Later, Gentry et al. [GLW14] introduced the concept of positional WE, which
allows to prove the aforementioned construction secure. In [GGH+13], Garg et al. showed
that indistinguishability obfuscation implies WE. Goldwasser et al. proposed the stronger
notion of extractable WE in [GKP+13]. While the security for WE is only with respect to
x /∈ L, extractable WE requires that any successful adversary against semantic security of
the WE, given an encryption with respect to x, implies the existence of an extractor that
extracts a witness w to x ∈ L. Thereby, the adversary and the extractor additionally get
an auxiliary input. Garg et al. [GGHW14] have shown that under the assumption that
special-purpose obfuscation exists, extractable WE for all languages in NP cannot exist.2

Zhandry [Zha16] introduced the concept of witness PRFs, which essentially generalizes
WE. Zhandry also proposes (CCA secure) reusable WE, which introduces an additional
global setup and thus allows to reuse certain parameters. This drastically reduces the
size of ciphertexts in WE schemes. We observe that our generic constructions of WE bear
similarities to how WE is constructed from witness PRFs. Yet, Zhandry aims at building
witness PRFs for any NP-language, where we aim at practical instantiations. All these

2Even if such special-purpose obfuscation exists, this does not rule out that extractable WE for a
sufficiently large interesting subset of NP exists.
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constructions build upon MLMs and/or obfuscation and are thus far from being practical.
To this end, Abusalah et al. [AFP16] recently introduced the notion of offline WE as a
step towards more practical WE. They split encryption into an expensive offline phase and
a much more efficient online phase, which allows them to achieve practical efficiency for
the online part. Nevertheless, the offline part and the decryption still requires obfuscation
and thus cannot be considered to be practical. Besides imposing a huge computational
overhead, MLM and obfuscation are still in a “break-repair” state and it is currently un-
known if one can come up with candidate constructions being secure under well established
assumptions.

Restricting Languages. In concurrent and independent work, Faonio et al. [FNV15] in-
troduced the concept of predictable arguments of knowledge (PAoK). They are one-round
interactive protocols in which the verifier generates a challenge and can at the same time
predict the prover’s answer to that challenge. Faonio et al. show that PAoKs are equiv-
alent to extractable WE [GKP+13]. Regarding concrete instantiations of PAoKs (and
thus extractable WE), they show how to construct PAoKs from extractable hash proof
systems (Ext-HPS) as defined by Wee in [Wee10]. Although their approach to construct-
ing WE can thus be seen as related to our approach, firstly ours is conceptually simpler
and secondly the languages covered by Ext-HPSs are very basic and very restricted, i.e.,
[Wee10] presents two instantiations; one for the iterated squaring relation and one for the
Diffie Hellman relation. It is also not clear if efficient instantiations for more expressive
languages can be found. We also note that due to the lack in expressiveness of Ext-HPS
as used in [FNV15], their constructions are not suitable for what we are targeting at.
Earlier work on (private) conditional oblivious transfer [COR99, JL09] can be viewed as
as an interactive version of (extractable) WE for very specific and restricted languages not
suitable for achieving our goals. Finally, [GGSW13] mentioned along the lines that earlier
work on SPHFs can be interpreted as establishing the existence of WE for certain restricted
languages and an informal sketch of a construction of WE from SPHFs was recently given
in [ABP15].

Applications of WE. WE in general extends the scope of encryption as it allows to en-
crypt a message using the description of a hard problem and only someone who knows
a solution to this problem is able to decrypt. WE is thus intuitively related to time-lock
puzzles [RSW96] and WE indeed has been used to realize a related concept denoted as time-
lock encryption, i.e., a method to encrypt a message such that it can only be decrypted
after a certain deadline has passed, but then very efficiently and by everyone. An approach
to realize such schemes from WE and so called computational reference clocks has been
proposed by Jager in [Jag15]. Liu et al. [LKW15] also propose to use their WE construc-
tion for time-lock encryption based on the Bitcoin protocol. Bellare and Hoang [BH15]
proposed to use WE to realize asymmetric password-based encryption, where the hash
of a password can be used to encrypt a message (acting as a public key) and only the
knowledge of the respective password allows decryption. Moreover, it has already been
shown in the seminal work [GGSW13] that WE can be used to construct identity-based
encryption (IBE) [BF01] as well as attribute-based encryption (ABE) [SW05] for circuits.
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2.3.1 Previous Work

SPHFs (denoted as hash proof systems) were initially used to construct CCA2 secure
public key encryption [CS98] without requiring the random oracle heuristic. Later it was
observed that SPHFs are sufficient to construct such encryption schemes [CS02]. They
use the SPHF exactly the other way round as we use it, i.e., in their setting decryption is
done with the knowledge of the hashing key and without the witness. This paradigm can
also be viewed as an implicit construction of publicly evaluable pseudorandom functions
[CZ14].

Hybrid Encryption. Kurosawa and Desmedt [KD04] used the paradigm described above
for hybrid encryption. A series of works follow their paradigm (e.g., [KPSY09]) and use
SPHFs to obtain CCA2 secure hybrid encryption schemes. Similar to [CS02], they use the
SPHF exactly the other way round as we are going to use it.

Key-Exchange. A line of work following Gennaro and Lindell [GL06] uses SPHFs for
password-based authenticated key exchange (PAKE) between two parties. This concept
was later extended to one-round PAKE [KV11] and generalized to language-authenticated
key exchange (LAKE) for various algebraic languages over bilinear groups in [BBC+13]
(and we note that follow-up work on various aspects exists). Most recently, in [BC16]
it was shown how to construct so called structure preserving SPHFs, which can use GS
proofs as witnesses. Even though this may sound somewhat related to our work, apart
from not constructing WE, the approach in [BC16] to build SPHFs is diametrically opposed
to our approach. In particular, our WE approach requires GS proofs to be public and that
they must not to be useful to reconstruct the hash value. So, applying our approach to
construct WE to the SPHFs in [BC16] does not help us.

2.3.2 Contribution

Motivation. While having WE schemes that support all languages in NP is appealing, it
is the main source of inefficiency. We aim to make WE practical, but in contrast to offline
WE as introduced in [AFP16] we focus on all aspects, i.e., encryption and decryption,
to be efficient. Our approach to improving the efficiency is by restricting the class of
supported languages from any NP-language to languages that are expressive enough to
cover many problems encountered in cryptographic protocol design. In particular, we aim
at algebraic languages defined over bilinear groups. Such languages are very relevant for
the design of cryptographic protocols as statements in these languages cover statements
that can be proven in a zero-knowledge (or witness indistinguishable) fashion using the
Groth-Sahai (GS) non-interactive proof framework [GS08]. Our techniques yield a novel
way of encryption, where one can encrypt messages with respect to a GS proof so that only
the prover, i.e., the party that computed the respective proof, can decrypt. We assume
that there are many interesting applications that could benefit from our technique.

Our contributions are as follows.
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• We provide a generic construction of WE from SPHFs and prove that if there exists
an SPHF for a language L, then there exists an adaptively sound WE scheme for
language L. Thereby, we define WE to provide an additional setup algorithm as
also done in [AFP16, Zha16], since this notion makes the schemes more efficient and
more convenient to use in protocol design.

• Using well known techniques such as universal hashing and secure symmetric en-
cryption schemes, we obtain a WE scheme for messages of arbitrary length.

• We present practical instantiations of our generic approach to WE for algebraic
languages in the bilinear group setting. We, thereby, achieve compatibility with
statements from the GS proof system. Besides being practically efficient, our con-
structions only require standard assumptions (i.e., DLIN).3

• We observe that the existing security notions for WE are unsuited when using WE
in combination with other primitives. To this end, we introduce a stronger security
notion for WE which considers the combination of WE with GS proofs and prove
that our instantiation satisfies this notion.

• We present an approach to use our WE construction for GS statements to elegantly
encrypt messages with respect to NIZK/NIWI proofs for statements in the frequently
used GS proof system so that only the one who computed the proof can decrypt.
This yields a novel way of encryption.

• To illustrate the aforementioned concept, we discuss two potential applications of
our techniques in the context of privacy preserving exchange of information.

3Our approach is also easily portable to the SXDH setting (and thus relying on DDH).
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3 Certified and Verifiable Infrastructure for Cloud Service

In this section, we describe the research on certified and verifiable infrastructure for cloud
service, especially in advances on graph signatures used for the representation of cloud
infrastructures. Overall, this research is concerned with analyzing clouds, certifying the
outcomes of that analysis and subsequently enabling a cloud provider to prove security
properties to verifiers, such as tenants. This work is predominantly in the area of privacy-
enhancing cryptography, however, we briefly introduce techniques for analyzing virtualized
infrastructures as well as certifiable compartmentalization, deriving graph representations
and proving their security properties as well, because they are a vital precondition to the
certification.

Consequently, we introduce one work on the systems’ foundations for certified secure cloud
infrastructures.

Section 3.1 outlines research on creating trustworthy compartments in virtualized infras-
tructures that are protected using a hardware-based mechanism. This research addresses
one of the major shortcomings of the topology certification present in Prismacloud:
The topology certification with graph signatures [Gro15a, Gro14] only covers topological
properties and is dependent on the control of the behavior of certified units (e.g., virtual
machines or network devices) by other means. Whereas there are proposals for creating
trustworthy compartments in virtualized infrastructures such as Trusted Platform Module
(TPM) [Tru14] and ARM TrustZone [ARM09], this proposal is the first one to protect
unikernels leveraging a hardware-based security mechanism. As a result, vertices in a
topology certification are trustworthy and in extension we provide a trustworthy graph
representation to the auditor for topology certification.

3.1 UniGuard: Protecting Unikernels using Intel SGX

Previous research on certified and verifiable virtualized infrastructures represents virtual
machines as monolithic computation units. Virtual machines can represent vertices and
their labels can contain information such as their operating system, platform and soft-
ware image. In addition, virtual machines execute multi-purpose computations and have
a large attack surface if we consider all their internal components. Another dimension,
is the trustworthiness of computations in virtual machines where privileged software can
ascertain information about computations. For a certified and verifiable virtualized in-
frastructure it is desirable to assure the trustworthiness of the vertices which results in a
correct topology certification.

The UniGuard project aims at realizing a unikernel-based virtualized infrastructure that
employs Intel Software Guard Extensions (SGX) to create a trusted execution environment
where privileged software cannot tamper with the execution of unikernels. Even though
unikernels [MRS+13] do not have a guest operating system or extraneous functionality,
they are still vulnerable to attacks from adversaries that have access to privileged software
and access to hardware.
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Figure 1: Unikernel and Intel SGX architectures

3.1.1 Previous Work

Unikernels [MRS+13] are specialized, minimal single-address virtual machines that have
system libraries, language runtime, and application and configuration files baked in, but
no general purpose-operating system. Figure 1a gives an overview of this paradigm.

The UniGuard work is based on Intel SGX [AGJS13] which is a mechanism integrated
into an Intel CPU that enables the creation of Trusted Execution Environments (TEE). A
Trusted Execution Environment is an environment that executes trusted applications in
isolation inside an operating system. Intel SGX includes a set of hardware instructions that
are used for generating secure software containers called enclaves. Enclaves are isolated
regions of memory for code and data

Haven [BPH15] was one of the first attempts to use Intel SGX. Haven executes unmodified
Windows applications inside a secure enclave. This approach requires the whole Windows
library OS inside the enclave to execute full Windows applications, which creates a large
Trusted Computing Base (TCB). This means that a vulnerability in the operating sys-
tem can compromise the security of the enclave. Figure 1b illustrates the conceptual
architecture of Intel SGX.

Scone [ATG+16] proposes a secure container mechanism for Docker that uses Intel SGX
to protect containers from an external malicious user. Even though Scone uses a smaller
TCB than Haven it still can be reduced if it was also supporting unikernels.

Sanctum [CLD16] provides a different approach than the previous works focusing in pro-
viding strong software isolation with minimal hardware changes to a RISC-V core. This
work’s main improvement in comparison with Intel SGX is that it does not allow software
attacks that analyze memory access patterns to gain confidential information. However,
it only focuses on software attacks in the threat model, while Intel SGX includes certain
hardware attacks in its threat model.

Other examples of using Intel SGX include VC3 [SCF+15] and Graphene-SGX [TPV17].
VC3 is focusing on MapReduce computations and uses Intel SGX to execute them in an

20 of 38



Report on Privacy-Enhancing Cryptography

Figure 2: UniGuard high-level architecture

untrusted virtualized infrastructure. Although, VC3 has a small TCB and low performance
overhead it only supports the Hadoop application. In contrast, Graphene-SGX supports
a wide range of unmodified applications and offers comparable performance overhead.

3.1.2 Contribution

The main contribution of this work is the architecture and realization of UniGuard , a
system that integrates Intel SGX with unikernels. We depict the architecture in Figure 2.
UniGuard makes it possible to deploy minimal specialized virtual machines, which execute
their trusted part in a secure enclave using Intel SGX. As a result, the unikernel is protected
from a number of software and hardware attacks.

The unikernel approach enables certification and verification of virtualized infrastruc-
tures [Gro14] on smaller functional units for compute resources and thereby a more
fine-grained representation. Whereas fully-fledged VMs may be connected to network
and storage vertices for each of their ingrained functionalities without differentiation, the
unikernel-based deployments can be restricted to the network and storage resources re-
quired for the designated function. Executing a unikernel in a secure enclave results in a
trustworthy vertex and in extend in a trustworthy graph representation.

UniGuard achieves its goal by creating a MirageOS library that interfaces with the Intel
SGX API. The library creates a thin layer between the unikernel and the secure enclave.
In essence, we can have a number of enclaves performing the secure computation inside
them or have only one enclave per unikernel. Since unikernels have a minimal footprint
the relationship between enclaves and unikernels is one-to-one.

Figure 2 illustrates the high-level architecture of UniGuard . We are using a particular Xen
hypervisor version that supports Intel SGX. The UniGuard API layer provides a wrapper
for enclave interfaces that create the hypercalls required for managing the enclave lifecycle.
The enclave hosts a version of MirageOS which includes a library responsible for integrating
a unikernel with the enclave.

The above approach is specialized for infrastructures that include a hypervisor. A similar
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approach can be taken when we use a container-based infrastructure where the operat ing
system plays the role of the hypervisor. The operating system kernel includes and SGX
driver that manages the lifecycle of the enclave and a library OS is included inside the
enclave.
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4 Abstracts of Research Papers

4.1 Privacy-Preserving Cryptography for the Cloud

• Georg Fuchsbauer, Christian Hanser and Daniel Slamanig: “Structure-Preserving
Signatures on Equivalence Classes and Constant-Size Anonymous Credentials”, in
Journal of Cryptology 2017 [FHS17]

Structure-preserving signatures (SPS) are a powerful building block for crypto-
graphic protocols. We introduce SPS on equivalence classes (SPS-EQ), which allow
joint randomization of messages and signatures. Messages are projective equivalence
classes defined on group element vectors, so multiplying a vector by a scalar yields
a different representative of the same class. Our scheme lets one adapt a signature
for one representative to a signature for another representative without knowledge
of any secret; and given a signature, an adapted signature for a different representa-
tive is indistinguishable from a fresh signature on a random message. We propose a
definitional framework for SPS-EQ and an efficient construction in Type-3 bilinear
groups, which we prove secure against generic forgers.

We also introduce a set-commitment scheme that lets one open subsets of the com-
mitted set. From this and SPS-EQ we then build an efficient multi-show attribute-
based anonymous credential system for an arbitrary number of attributes. Our
ABC system avoids costly zero-knowledge proofs and only requires a short interac-
tive proof to thwart replay attacks. It is the first credential system whose bandwidth
required for credential showing is independent of the number of its attributes, i.e.,
constant-size. We propose strengthened game-based security definitions for ABC
and prove our scheme anonymous against malicious organizations in the standard
model; finally, we give a concurrently secure variant in the CRS model.

• David Derler and Daniel Slamanig: “Fully-Anonymous Short Dynamic Group Sig-
natures Without Encryption”, in submission [DS16]

Group signatures are a central tool in privacy-enhancing crypto, which allow mem-
bers of a group to anonymously sign on behalf of the group. Ideally, group signatures
are dynamic and thus allow to dynamically and concurrently enroll new members
to a group. For such schemes Bellare et al. (CT-RSA’05) proposed a strong secu-
rity model (BSZ model) that preserves anonymity of a group signature even if an
adversary can see arbitrary key exposures or arbitrary openings of other group signa-
tures. All previous constructions achieving this strong anonymity notion follow the
so called sign-encrypt-prove (SEP) paradigm. In contrast, all known constructions
which avoid this paradigm and follow the alternative “without encryption” paradigm
introduced by Bichsel et al. (SCN’10), only provide a weaker notion of anonymity
(which can be problematic in practice). Until now it was not clear if constructions
following this paradigm, while providing strong anonymity in the sense of BSZ even
exist.

We answer this question to the affirmative by proposing a novel approach to dy-
namic group signature schemes following this paradigm, which is a composition of

23 of 38



Report on Privacy-Enhancing Cryptography

structure preserving signatures on equivalence classes (Asiacrypt’14) and other
standard primitives. Our results are interesting for various reasons: We can prove
our construction following this “without encryption” paradigm secure without re-
quiring random oracles. Moreover, when opting for an instantiation in the ROM, the
so obtained scheme is extremely efficient and outperforms the fastest constructions
providing anonymity in the BSZ model known to date. Regarding constructions
providing a weaker anonymity notion than BSZ, we surprisingly outperform the
popular short BBS group signature scheme (Crypto’04) and thereby even obtain
shorter signatures.

• David Derler and Daniel Slamanig: “Practical Witness Encryption for Algebraic
Languages Or How to Encrypt Under Groth-Sahai Proofs”, in submission [DS15]

Witness encryption (WE) is a recent powerful encryption paradigm, which allows
to encrypt a message using the description of a hard problem (a word in an NP-
language) and someone who knows a solution to this problem (a witness) is able
to efficiently decrypt the ciphertext. Recent work thereby focuses on constructing
WE for NP complete languages (and thus NP). While this rich expressiveness
allows flexibility w.r.t. applications, it makes existing instantiations impractical.
Thus, it is interesting to study practical variants of WE schemes for subsets of NP
that are still expressive enough for many cryptographic applications.

We show that such WE schemes can be generically constructed from smooth pro-
jective hash functions (SPHFs). In terms of concrete instantiations of SPHFs (and
thus WE), we target languages of statements proven in the popular Groth-Sahai (GS)
non-interactive witness-indistinguishable and zero-knowledge proof framework. This
allows us to provide a novel way to encrypt. In particular, encryption is with respect
to a GS proof and efficient decryption can only be done by the respective prover.
The so obtained constructions are entirely practical. To illustrate our techniques,
we apply them in context of privacy-preserving exchange of information.

4.2 Certified and Verifiable Infrastructure for Cloud Service

• Ioannis Sfyrakis and Thomas Groß: “UniGuard: Protecting Unikernels using Intel
SGX”, UNEW Research Report [SG17]

Malicious insiders exploit vulnerabilities in the software layer of cloud infrastruc-
tures namely hypervisors, management virtual machines, and guest virtual machines.
Computations inside virtual machines can leak information to privileged users and
operating systems or hypervisors as numerous vulnerabilities have shown in recent
times.

Computations executed in lightweight virtual machines called unikernels have a min-
imal attack surface, however they are still prone to leaking information to the op-
erating system or to the hypervisor that hosts them. Indeed the multi-platform
deployment of unikernels requires a uniform protection mechanism to ensure that
information does not leak from unikernels.
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In this paper, we present UniGuard, a uniform protection mechanism that leverages
Intel Software Guard Extension (SGX) to protect computations inside unikernels.
We believe that unikernels are an excellent match for Intel SGX leveraging their
advantages and creating a Trusted Execution Environment (TEE). Our main contri-
bution is the design and implementation of a multi-platform library that gives access
to the Intel SGX API for unikernel developers to create unikernels that execute the
trusted part of the unikernel inside an Intel SGX enclave.
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5 Conclusion

This deliverable has described the research conducted within Task 4.3 during the second
year of the Prismacloud project with its two subtasks: privacy-preserving cryptography
for the cloud (Task 4.3.1) and certified and verifiable infrastructure for cloud service (Task
4.3.2).

In Task 4.3.1 we have focused our research on privacy-friendly authentication methods
using privacy-enhancing cryptography that enables the application of cloud computing or
are enabled by the existence of cloud computing. In particular, we have studied structure-
preserving signatures on equivalence classes that are a central building block to blind
signatures, one- and multi-show attribute-based anonymous credentials as well as group
signatures. We present an efficient multi-show ABC system and a highly efficient approach
to construct group signatures. Finally, we have investigated efficient approaches to witness
encryption for restricted classes of languages and have investigated their application to
privacy protection.

In Task 4.3.2 we have focused our research on two strands: one is to establish the systems
foundations to enable a certified and verifiable infrastructures, the other is to advance the
capabilities of the topology certification to represent virtualized infrastructures and proofs
on their security properties. In particular, we have studied the possibility of establishing
trustworthy unikernel-based computation units using a hardware-based mechanism that
results in trustworthy graph representation for topology certification.
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