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Abstract. A chameleon-hash behaves likes a standard collision-resistant hash function for outsiders. If,
however, a trapdoor is known, arbitrary collisions can be found. Chameleon-hashes with ephemeral trapdoors
(CHET; Camenisch et al., PKC ’17) allow prohibiting that the holder of the long-term trapdoor can find
collisions by introducing a second, ephemeral, trapdoor. However, this ephemeral trapdoor is required to be
chosen freshly for each hash.
We extend these ideas and introduce the notion of chameleon-hashes with dual long-term trapdoors
(CHDLTT). Here, the second trapdoor is not chosen freshly for each new hash; Rather, the hashing party can
decide if it wants to generate a fresh second trapdoor or use an existing one. This primitive generalizes CHETs,
extends their applicability and enables some appealing new use-cases, including three-party sanitizable
signatures, group-level selectively revocable signatures and break-the-glass signatures. We present two
provably secure constructions and an implementation which demonstrates that this extended primitive is
efficient enough for use in practice.

1 Introduction

Standard chameleon-hashes have proven to be useful in very different areas such as on/offline signatures [28,
33, 57], (tightly) secure signatures [14, 44, 51], but also sanitizable signature [2, 17, 22, 41] and identity-based
encryption [59]. They are also useful in context of trapdoor-commitments, direct anonymous attestation, Σ-
protocols and distributed hashing [1, 10, 16]. Recently, they have been extended to have ephemeral trapdoors,
which allow one to find collisions if, and only if, two trapdoors at the same time are known [22]. One of those
trapdoors is long-term, while the second one is chosen freshly for each new hash.

The first application of these so called CHETs were invisible sanitizable signatures [7, 22]. In this primitive,
a semi-trusted third party, named the sanitizer having its own key pair, can modify signer-chosen admissible
parts of a signed message to arbitrary bit-strings [2, 17]. The derived signatures still verify, while an outsider
cannot decide which parts are actually modifiable. However, the current formalization of those chameleon-hashes
inherently requires that the ephemeral trapdoor is chosen freshly for each new hash. Thus, for each generated
hash, the hashing party can decide if, and when, the holder of the long-term trapdoor can find collisions. This
requirement, however, is quite restricting and once it is lifted, several new interesting use-cases are possible.
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Motivation and Contribution. We introduce chameleon-hashes with dual long-term trapdoors (CHDLTT).
In this primitive, the second trapdoor no longer needs to be freshly generated on every hash computation, but
can be re-used in several hash computations. This has several advantages over CHETs as defined by Camenisch
et al. [22]. For example, our definitions allow that the trapdoors can be generated in advance (and thus can, e.g.,
be registered at a PKI before usage), re-used multiple times (which adds flexibility and saves computational
costs) and are inherently independent of any other hashing keys created. In other words, releasing the second
trapdoor allows the holder of the long-term secret to find collisions for all hashes created using the corresponding
second public hashing key that corresponds to the trapdoor. Thus, our new primitive strictly generalizes CHETs:
using a fresh trapdoor for each generated hash within our extended definition of CHDLTT resembles the behavior
of a CHET.

We introduce a suitable framework, along with corresponding security definitions and two provably secure
constructions. The first construction is based on standard collision-resistant chameleon-hashes, while the second
one is based on the one-more RSA-Assumption. To demonstrate the usefulness of our new primitive, we show
how one can construct three-party sanitizable signatures. In this new primitive, a signer-designated third party
can decide if, and when, the sanitizer is able to sanitize the admissible parts of messages. This new primitive
enables several new use-cases for sanitizable signatures scheme. For example, consider the following scenario,
where “standard” sanitizable signatures [2] are not sufficient. Assume a supply chain, where the delivery person
needs to claim that it delivered the goods as instructed by the sender, while also the recipient needs to vouch for
the correct delivery at time of successful reception. In standard sanitizable signature schemes, either a fresh
signature is generated at delivery, which is approved by the recipient, or vice versa. However, in this case, the
sender has no control what is actually signed. Our extended primitives allows to tackle this problem: the sender
can sign what has been commissioned, while the delivery person can approve that it has successfully delivered the
goods, if, and only if, the recipient allows the delivery man to do this, i.e., by releasing an additional trapdoor.
To some extend, this resembles “four-eyes”-signatures [12], but in a more sophisticated manner, as in our case
also damaged goods can be reported within the same report, e.g., using special blocks of the message.

Additional application scenarios include group-level selectively revocable signatures and break-the-glass
signatures. Revocable signatures have already been mentioned by Camenisch et al. [22] as a potential additional
application scenario, while break-the-glass signatures are a new concept. Moreover, our evaluation shows that
the primitive is practically efficient. Summarized, our work leads to some new interesting applications of
chameleon-hashes, which may give rise to new use-cases which have not been considered yet.

Related Work and State-of-the-Art. Chameleon-hashes were introduced by Krawczyk and Rabin [47],
based on the work done by Brassard et al. [16]. Later, they have been ported to the identity-based setting,
i.e., ID-based chameleon-hash functions, where the holder of some master secret key can extract new secret
keys for new identities [4, 6, 56, 58]. However, most of the schemes presented suffer from the key-exposure
problem [5, 27, 47]. Key-exposure means that seeing a single collision in the hash allows to find further collisions
by extracting the corresponding trapdoor, i.e., the secret key.4 This problem was addressed by the introduction
of “key-exposure free” chameleon-hashes [5, 26, 27, 38, 39, 56], which prohibit extracting the secret key if a
collision was seen. This also includes combinations of both techniques [29]. Such schemes allow for re-using
secret key-material. However, the definition of collision-resistance is defined w.r.t. some additional label L.5 This
label L is used to define a “collision-domain”, i.e., such hashes do not prohibit that once a collision is made
public for a label L, an adversary cannot produce additional collisions w.r.t. that label L. We stress that our
framework does not require such a label, i.e., it is collision-resistant in the “usual” sense. Brzuska et al. also
proposed a formal framework for tag-based chameleon-hashes secure under random-tagging attacks, i.e., they

4 In the case of identity-based chameleon-hashes w.r.t. to some identity.
5 Also referred to as nonce or tag.
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add an additional random tag to the input of the hashing algorithm [17]. We stress that all of the mentioned
approaches are orthogonal to our primitive, as in our case two keys at the same time are required. Camenisch
et al. presented a new type of chameleon-hash, where the hashing party can prohibit that the holder of the
long-term secret can find collisions by adding a second, i.e., ephemeral, trapdoor [22], which is chosen freshly for
each new hash. Their work can be seen as the starting point for our work. Additional related work is discussed
when presenting the applications of our new primitive.

2 Preliminaries

Let us give our notation and assumptions first. Additional standard formal security definitions are given in
App. A.

Notation. λ ∈ N denotes our security parameter. All algorithms implicitly take 1λ as an additional input.
We write a ← A(x) if a is assigned to the output of algorithm A with input x. An algorithm is efficient if it
runs in probabilistic polynomial time (ppt) in the length of its input. All algorithms are ppt, if not explicitly
mentioned otherwise. Most algorithms may return a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception.
Returning output ends an algorithm. If S is a set, we write a ← S to denote that a is chosen uniformly at
random from S. For a list we require that there is an injective, and efficiently reversible, encoding, mapping
the list to {0, 1}∗. In the definitions, we speak of a general message spaceM to be as generic as possible. For
our instantiations, however, we let the message spaceM be {0, 1}∗ to reduce unhelpful boilerplate notation. A
function ν : N→ R≥0 is negligible, if it vanishes faster than every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such
that ν(n) ≤ n−k, ∀n > n0. Moreover, we require that one can derive a public key from the private key. This is
not explicitly checked. This can be achieved by appending the randomness used to generate the key pair to the
secret key.

The One-More-RSA-Assumption [9]. Let (n, e, d, p, q)← RSA(1λ) be an RSA-key generator returning an
RSA modulus n = pq, where p and q are random distinct primes, e > 1 an integer co-prime to ϕ(n), and
d ≡ e−1 mod ϕ(n). The one-more-RSA-assumption associated to RSA is provided an inversion oracle I, which
inverts any element x ∈ Z∗n w.r.t. e, and a challenge oracle C, which at each call returns a random element
yi ∈ Z∗n. An adversary wins if, given n and e, it is able to invert more elements received by C than is makes calls
to I. The corresponding assumption states that for every ppt adversary A there exists a negligible function ν
such that:

Pr[(n, p, q, e, d)← RSA(1λ), X ← A(n, e)C(n),I(d,n,·) :
more values returned by C are inverted than queries to I] ≤ ν(λ)

Here, X is the set of inverted challenges.
We require that e is larger than any possible n w.r.t. λ and that it is prime. Re-stating the assumption with

this condition is straightforward. In this case, it is also required that e is drawn independently from p, q, or n
(and d is then calculated from e, and not vice versa). This can, e.g., be achieved by demanding that e is drawn
uniformly from [n′ + 1, . . . , 2n′] ∩ {p | p is prime}, where n′ is the largest RSA modulus possible w.r.t. to λ. The
details are left to the concrete instantiation of RSA.

Chameleon-Hashes. The given framework is the one by Camenisch et al. [22].

Definition 1. A chameleon-hash CH consists of five algorithms (PGen,KGen,Hash,Ver,Adap), such that:
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PGen. It outputs the public parameters of the scheme:

ppch ← PGen(1λ)

We assume that ppch is an implicit input to all other algorithms.
KGen. On input ppch, it outputs the private and public key of the scheme:

(skch, pkch)← KGen(ppch)

Hash. It gets as input a public key pkch and a message m to hash. It outputs a hash h and some randomness r:
(h, r)← Hash(pkch,m).6

Ver. This deterministic algorithm gets as input the public key pkch, a message m, randomness r and a hash h. It
outputs a decision d ∈ {0, 1} indicating whether (d = 1) or not (d = 0) the hash h is valid:

d← Ver(pkch,m, r, h)

Adap. On input of secret key skch, the message m, the randomness r, hash h and a new message m′, it outputs
new randomness r′:

r′ ← Adap(skch,m,m
′, r, h)

Correctness. For a CH we require the correctness property to hold. In particular, we require that for all λ ∈ N,
for all ppch ← PGen(1λ), for all (skch, pkch) ← KGen(ppch), for all m ∈ M, for all (h, r) ← Hash(pkch,m), for
all m′ ∈ M, we have for all for all r′ ← Adap(skch,m,m

′, r, h), that 1 = Ver(pkch,m, r, h) = Ver(pkch,m
′, r′, h).

This definition captures perfect correctness.

Indistinguishability. Indistinguishability requires that r does not reveal if it was obtained through Hash or Adap.
The messages are chosen by the adversary.

Definition 2 (Indistinguishability). A chameleon-hash CH is indistinguishable, if for any ppt adversary A
there exists a negligible function ν such that

∣∣∣Pr[IndCH
A (λ) = 1]− 1

2

∣∣∣ ≤ ν(λ) . The corresponding experiment is
depicted in Fig. 1.

Collision Resistance. Collision resistance says, that even if an adversary has access to an adapt oracle, it cannot
find any collisions for messages other than the ones queried to the adapt oracle. Note, this is a stronger definition
than key-exposure freeness [5, 27], as key-exposure freeness does not guarantee that for a given collision no
additional ones can be found [26].

Definition 3 (Collision-Resistance). A chameleon-hash CH is collision-resistant, if for any ppt adversary A
there exists a negligible function ν such that Pr[CollResCH

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is
depicted in Fig. 2.

Uniqueness. Uniqueness requires that it is hard to come up with two different randomnesses for the same message
m∗ such that the hashes are equal, for the same adversarially chosen pk∗.

Definition 4 (Uniqueness). A chameleon-hash CH is unique, if for any ppt adversary A there exists a negligible
function ν such that Pr[UniquenessCH

A (1λ) = 1] ≤ ν(λ) The corresponding experiment is depicted in Figure 3.

Definition 5 (Secure Chameleon-Hashes). A chameleon-hash CH is secure, if it is correct, indistinguishable,
and collision-resistant.

It depends on the concrete use-case, if CH needs to be unique.
6 The randomness r is also sometimes called “check value” [3].
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Experiment IndCH
A (λ)

ppch ← PGen(1λ)
(skch, pkch)← KGen(ppch)
b← {0, 1}
a← AHashOrAdapt(skch,·,·,·,b),Adap(skch,·,·,·,·)(pkch)
where HashOrAdapt on input skch,m,m

′, b:
(h, r)← Hash(pkch,m

′)
(h′, r′)← Hash(pkch,m)
r′′ ← Adap(skch,m,m

′, r′, h′)
If r = ⊥ ∨ r′′ = ⊥, return ⊥
if b = 0, return (h, r)
if b = 1, return (h′, r′′)

return 1, if a = b
return 0

Fig. 1. Indistinguishability

Experiment CollResCH
A (λ)

ppch ← PGen(1λ)
(skch, pkch)← KGen(ppch)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)← AAdap′(skch,·,·,·,·)(pkch)

where Adap′ on input skch,m,m
′, r, h:

return ⊥, if Ver(pkch,m, r, h) 6= 1
r′ ← Adap(skch,m,m

′, r, h)
return ⊥, if r′ = ⊥
Q ← Q∪ {m,m′}
return r′

return 1, if Ver(pkch,m
∗, r∗, h∗) = 1 ∧

Ver(pkch,m
′∗, r′∗, h∗) = 1 ∧

m′∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 2. Collision Resistance

Experiment UniquenessCH
A (λ)

ppch ← PGen(1λ)
(pk∗,m∗, r∗, r′∗, h∗)← A(ppch)
return 1, if Ver(pk∗,m∗, r∗, h∗) = Ver(pk∗,m∗, r′∗, h∗) = 1 ∧ r∗ 6= r′∗

return 0

Fig. 3. Uniqueness

3 CHs with Dual Long-Term Trapdoors

As already mentioned, a chameleon-hash with dual long-term trapdoors (CHDLTT) allows to prevent the holder
of some long-term trapdoor skchret from finding collisions, as long as no additional second trapdoor std is known.
This additional trapdoor can can be re-used for multiple hash generation, but may also be chosen freshly. This,
e.g., allows to generate trapdoors in advance and to make one of the trapdoors public beforehand. Clearly,
providing or withholding the second trapdoor information corresponding to the public part ptd of the second
trapdoor thus allows to decide if finding a collision is possible for the holder of the long-term trapdoor. Due to
this new possibility, we need to introduce a new framework, given subsequently, which is also accompanied by
suitable security definitions. This framework is inspired by, and compatible to, the one given by Camenisch et
al. [22] and it can be seen as a generalization of their ideas.

Definition 6 (CHDLTT). A chameleon-hash with dual long-term trapdoors CHDLLT is a tuple (PGen,KGen,
TDGen,Hash,Ver,Adap), such that:

PGen. It outputs the public parameters:
ppchret ← PGen(1λ)

which are input to all other algorithsm, which we sometimes may not make explicit for notational convenience.
KGen. On input ppchret, it outputs the long-term private and public key of the scheme:

(skchret, pkchret)← KGen(ppchret)
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TDGen. It outputs a private and public trapdoor pair:
(std, ptd)← TDGen(ppchret)

Hash. It gets as input a public key pkchret, ptd and a message m to hash. It outputs a hash h and randomness r:
(h, r)← Hash(pkchret, ptd,m)

Ver. It gets as input the public key pkchret, ptd, a message m, a hash h and randomness r. It outputs a decision
bit d ∈ {0, 1}, indicating whether the given hash is correct:

d← Ver(pkchret, ptd,m, r, h)
Adap. It gets as input skchret, the old message m, the old randomness r, the new message m′, the hash h and the

trapdoor information std. It outputs new randomness:
r′ ← Adap(skchret,m,m

′, r, h, std)

Correctness. For each CHDLTT we require the correctness properties to hold, i.e., for all security parameters
λ ∈ N, for all ppchret ← PGen(1λ), for all (skchret, pkchret) ← KGen(ppchret), for all (std, ptd) ← TDGen(ppchret),
for all m ∈M, for all (h, r)← Hash(pkchret, ptd,m), for all m′ ∈M, for all r′ ← Adap(skchret,m,m

′, r, h, std), it
holds that Ver(pkchret, ptd,m, r, h) = Ver(pkchret, ptd,m′, r′, h) = 1. This definition captures perfect correctness.
We also require some security guarantees, which we introduce next.

Indistinguishability. Indistinguishability requires that the randomnesses r does not reveal if it was obtained
through Hash or Adap. In other words, an outsider cannot decide whether a message is the original one or
not. Note, however, that both secrets are generated honestly, i.e., for adversarially generated keys no security
guarantees are given. Moreover, only one trapdoor pair is generated; security for multiple trapdoor information
pairs can be shown for any indistinguishable CHDLTT using a simple hybrid argument.

Experiment IndCHDLTT
A (λ)

ppchret ← PGen(1λ)
(skchret, pkchret)← KGen(ppchret)
(std, ptd)← TDGen(ppchret)
b← {0, 1}
a← AHashOrAdapt(skchret,std,·,·,b)

Adap(skchret,·,·,·,·,·)
(pkchret, ptd)

where HashOrAdapt on input skchret, std,m,m′, b:
let (h, r)← Hash(pkchret, ptd,m′)
let (h′, r′)← Hash(pkchret, ptd,m)
let r′′ ← Adap(skchret,m,m

′, r′, h′, std)
if r′′ = ⊥ ∨ r′ = ⊥, return ⊥
if b = 0, return (h, r)
if b = 1, return (h′, r′′)

return 1, if a = b
return 0

Fig. 4. Indistinguishability

Experiment UniquenessCHDLTT
A (λ)

ppchret ← PGen(1λ)
(pk∗,m∗, r∗, r′∗, ptd∗, h∗)← A(ppch)
return 1, if Ver(pkchret, ptd∗,m∗, r∗, h∗) =

Ver(pkchret, ptd∗,m∗, r′∗, h∗) = 1 ∧ r∗ 6= r′∗

return 0

Fig. 5. Uniquessness

Definition 7 (Indistinguishability). A CHDLTT is indistinguishable, if for every ppt adversary A there exists
a negligible function ν such that

∣∣ Pr[IndCHDLTT
A (λ) = 1]− 1

2
∣∣ ≤ ν(λ) . The corresponding experiment is depicted

in Fig. 4.
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Public Collision Resistance. Public collision resistance requires that, even if an adversary has access to an Adap
oracle, it cannot find any collisions by itself, even if it can chose ptd. Clearly, the collision must be fresh, i.e.,
must not be produced using the Adap oracle.
Definition 8 (Public Collision-Resistance). A CHDLTT is publicly collision-resistant, if for any ppt adversary
A there exists a negligible function ν such that Pr[PublicCollResCHDLTT

A (1λ) = 1] ≤ ν(λ). The corresponding
experiment is depicted in Fig. 6.

Private Collision-Resistance. Private collision-resistance requires that even the holder of the secret key skchret
cannot find collisions as long as std is unknown, even if it can request collisions for different pks. This catches
the idea that the hashes for a given ptd may be equivocated for different pkchrets. This is formalized by a honest
adaption oracle which returns collisions for other key pairs. Hence, A’s goal is to return an actual collision for a
public key pk∗, for an honestly generated ptd, for which it did not see a collision generated by the oracle, but for
an arbitrary skchret.

Experiment PublicCollResCHDLTT
A (λ)

ppchret ← PGen(1λ)
(skchret, pkchret)← KGen(ppchret)
Q ← ∅
(m∗, r∗,m′∗, r′∗, ptd∗, h∗)← AAdap′(skchret,··· )(pkchret)
where Adap′ on input skchret,m,m

′, r, std, ptd, h:
return ⊥, if Ver(pkchret, ptd,m, r, h) = 0
r′ ← Adap(skchret,m,m

′, r, h, std)
If r′ = ⊥, return ⊥
Q ← Q∪ {(ptd,m), (ptd,m′)}
return r′

return 1, if Ver(pkchret, ptd∗,m∗, r∗, h∗) = 1 ∧
Ver(pkchret, ptd∗,m′∗, r′∗, h∗) = 1 ∧
(ptd∗,m′∗) /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 6. Public Collision-Resistance

Experiment PrivateCollResCHDLTT
A (λ)

ppchret ← PGen(1λ)
(std, ptd)← TDGen(ppchret)
Q ← ∅
(pk∗,m∗, r∗,m′∗, r′∗, h∗)← AAdap′(std,·,·,·,·,·,·)(ptd)
where Adap′ on input std, skchret,
pkchret,m,m

′, r, h:
return ⊥, if Ver(pkchret, ptd,m, r, h) = 0
r′ ← Adap(skchret,m,m

′, r, h, std)
return ⊥, if r′ = ⊥
Q ← Q∪ {(pkchret,m), (pkchret,m

′)}
return r′

return 1, if Ver(pk∗, ptd,m∗, r∗, h∗) = 1 ∧
Ver(pk∗, ptd,m′∗, r′∗, h∗) = 1 ∧
(pk∗,m′∗) /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 7. Private Collision-Resistance

Definition 9 (Private Collision-Resistance). A CHDLTT is privately collision-resistant, if for any ppt adver-
sary A there exists a negligible function ν such that Pr[PrivateCollResCHDLTT

A (1λ) = 1] ≤ ν(λ). The corresponding
experiment is depicted in Fig. 7.

Uniqueness. Uniquess requires that even if the adversary can generate the public key and the corresponding
public trapdoor, it cannot find two different randomnesses for the same hash and message such that both are
valid.
Definition 10 (Uniqueness). A CHDLTT is unique, if for any ppt adversary A there exists a negligible function
ν such that Pr[UniquenessCHDLTT

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in Fig. 5.
Definition 11 (Secure CHDLTT). We call a CHDLTT secure, if it is correct, indistinguishable, publicly
collision-resistant and privately collision-resistant.

As for CHs, it depends on the concrete use-case, if uniqueness is required.
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PGen(1λ). Return ppchret ← CH.PGen(1λ).
KGen(ppchret). Return (skchret, pkchret)← CH.KGen(ppchret).
TDGen(ppchret). Return (std, ptd)← CH.KGen(ppchret).
Hash(pkchret, ptd,m). Let (h1, r1) ← CH.Hash(pkchret, (pkchret, ptd,m)) and (h2, r2) ← CH.Hash(ptd, (pkchret, ptd,m)). Re-

turn ((h1, h2), (r1, r2)).
Ver(pkchret, ptd,m, r, h). Let b1 ← CH.Ver(pkchret, (pkchret, ptd,m), r1, h1) and b2 ← CH.Ver(ptd, (pkchret, ptd,m), r2, h2). If

b1 = 0 ∨ b2 = 0, return 0. Return 1.
Adap(skchret,m,m

′, r, h, std). If 0 = Ver(pkch,m, r, h), return ⊥. Compute r′1 ← CH.Adap(skchret, (pkchret, ptd,m), (pkchret,
ptd,m′), r1, h1), and r′2 ← CH.Adap(std, (pkchret, ptd,m), (pkchret, ptd,m′), r2, h2). Return (r′1, r′2).

Construction 1: Black-box construction of CHDLTT

4 Constructions

We first show how to bootstrap a CHDLTT scheme in a black-box fashion from any given existing secure
chameleon-hash CH, inspired by the ideas given by Camenisch et al. [22] who also proposed a suitable chameleon-
hash CH based on the ideas by Brzuska et al. [17]. We then present a direct construction in the hidden order
group setting based on the one-more RSA-Assumption.

Black-Box Construction. We now present a black-box construction from any existing chameleon-hash CH.
Namely, we show how one can achieve our goals by combining two instances of a secure chameleon-hash CH.
However, instead of hashing the messages alone, one also requires to hash the public keys pkchret and ptd in
question to achieve our strengthened definitions. This is described in detail in Construction 1.

Theorem 1. If CH is secure (and unique), then Construction 1 is a secure (and unique) CHDLTT.

We sketch the proof below. The detailed proof of Theorem 1 is given in App. B.

Proof (Sketch). Indistinguishability follows from the indistinguishability of the underlying chameleon-hashes. If
an adversary can find a collision (either for public and private collision-resistance), than either h1 or h2 must be
a fresh collision, which can easily be extracted. The need to also hash the public keys comes from the fact that
the adversary is, in our model, allowed to choose the trapdoor. For uniqueness, the adversary must find two
randomness values for the same hash and message. Thus, the randomness for either h1 or h2 must be non-unique.

It remains to show if we can also directly construct a CHDLTT, which we answer to the affirmative subsequently.

A Direct Construction. We now present a direct construction, based on the one-more RSA-Assumption. It is
inspired by ideas due to Brzuska et al. [17], Pöhls et al. [53] and Camenisch et al. [22], enriched with the trick to
also hash the public keys, as introduced in our first construction.

In our construction (illustrated in Construction 2), the public trapdoor ptd is an additional RSA-modulus n′.
Thus, only if the factorization of n′ = p′q′, contained in std, and n = pq, which is the secret key skch, is known,
a collision can be produced. We assume that the bit-length of n and n′ is the same, which is implicitly given
by the security parameter λ. Furthermore, we assume that an algorithm aborts if a modulus is too large for
the given security parameter. We note that the condition on the size of e also implies gcd(ϕ(nn′), e) = 1, which
makes the construction a bit more efficient than the solution by Camenisch et al. [22] which require e > n3. Let
Hn : {0, 1}∗ → Z∗n, where n ∈ N, denote a random oracle.

Theorem 2. If the one-more RSA-Assumption holds, then Construction 2 is a secure CHDLTT in the random-
oracle model.
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PGen(1λ). Call RSA with the restriction that e is larger than any possible n w.r.t λ and e prime. Return e.
KGen(ppchret). Generate two primes p and q using RSA(1λ). Set skch ← (p, q). Let n ← pq. Set pkch ← n. Return

(skchret, pkchret).
TDGen(ppchret). Generate two primes p′ and q′ using RSA(1λ). Set std← (p′, q′), n′ ← p′q′, and ptd← n′. If gcd(n, n′) 6= 1,

start over. Return (std, ptd).
Hash(pkchret, ptd,m). Draw r ← Z∗nn′ . Let g ← Hnn′(m,n, n′) and h← gre mod nn′. Return (h, r).
Ver(pkchret, ptd,m, r, h). Return ⊥, if r /∈ Z∗nn′ . Let g ← Hnn′(m,n, n′) and h′ ← gre mod nn′. Return 1, if h = h′. Return

0.
Adap(skchret,m,m

′, r, h, std). Check that n′ = p′q′, where p′ and q′ are taken from std. If this is not the case, return
⊥. If Ver(pkch,m, r, h) = 0, return ⊥. Let d s.t. de ≡ 1 mod ϕ(nn′), g ← Hnn′(m,n, n′), h ← gre mod nn′, g′ ←
Hnn′(m′, n, n′) and r′ ← (h(g′−1))d mod nn′. Return r′.

Construction 2: CHDLTT from the one-more RSA-Assumption

Table 1. Percentiles for key generation in ms

KGen KGen2 TDGen TDGen2

Min. 45 43 45 43
25% 107 112 111 109
Med. 164 168 164 163
75% 239 240 238 243
90% 331 319 320 329
95% 383 374 368 390
Max. 525 505 533 553
Avg. 186 186 184 187
SD 99.34 96.00 95.50 101.30

Table 2. Percentiles for the other algorithms in ms

Hash Hash2 Ver Ver2 Adap Adap2
Min. 20 37 20 37 53 121
25% 22 39 22 38 70 125
Med. 23 40 23 39 75 130
75% 28 43 27 43 85 139
90% 35 49 33 49 106 154
95% 45 54 43 54 138 164
Max. 137 107 153 91 399 258
Avg. 27 42 27 42 85 135
SD 12.75 6.73 12.36 6.21 35.32 14.93

We sketch the proof below. The detailed proof of Theorem 1 is given in App. C.

Proof (Sketch). Indistinguishability follows from the fact that a random oracle behaves as a function, while
RSA defines a permutation with the restrictions given and the values are distributed uniformly in Z∗nn′ . If an
adversary can find a collision (either for public or private collision-resistance), than a reduction can extract an
eth root of one of the moduli, while uniqueness follows from the same fact used for indistinguishability.

5 Evaluation

To demonstrate the practicality of our schemes, we have implemented them in Java. We implemented both
CHDLTT construction, whereas for the first we use the standard RSA-based chameleon-hash as the underlying
primitive. All RSA-moduli have a fixed bit-length of 2, 048Bit (with balanced primes). Likewise, e has 2, 050Bit.
The random oracles were implemented using SHA-512 in standard counter-mode [11, 23, 37].

The measurements were performed on a Lenovo W530 with an Intel i7-3470QM@2.70Ghz, and 16GiB of
RAM. No performance optimization such as CRT were implemented and the computation is performed by a
single thread. The reason for this choice is to obtain a lower bound of the runtime and any additional optimization
will only speed up the calculation. An overview is given in Fig. 8, containing the averages of each algorithm.
More detailed results are depicted in Fig. 9, Fig. 10, Tab. 1 and Tab. 2. In the figures, and tables, the algorithms
of Construction 1 have no subscript, while the algorithms of Construction 2 are sub-scripted with “2”. 1, 000
runs were taken. Parameter generation is omitted, as this is a one-time setup, i.e., drawing a random prime.
As demonstrated by the runtime measurements, both primitives can be considered practical. The lion’s share is
finding suitable primes during key generation. All exponentiations within the algorithms only have a negligible
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Fig. 9. Key generation algorithm runtime in ms

overhead, as seen by the runtime. However, as key generation only needs to be done once, this seems to be
acceptable, even with realistic security parameters and rather expensive RSA-based primitives.

6 Application: Three-Party Sanitizable Signatures 3SSS

We now present applications of our CHDLTTs. The first are three-party sanitizable signatures. Sanitizable
signatures (SSS) allow a signer to determine which blocks m[i] of a message m = (m[1],m[2], . . . ,m[i], . . . ,m[`])
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Fig. 10. Other algorithms’ runtime in ms

are admissible. Any such admissible block can be changed to an arbitrary bitstring m[i]′ ∈ {0, 1}∗, where
i ∈ {1, 2, . . . , `}, by a semi-trusted party named the sanitizer, if it had received an additional secret. In a
nutshell, sanitization of a message m results in an altered message m′ = (m[1]′,m[2]′, . . . ,m[i]′, . . . ,m[`]′), where
m[i] = m[i]′ for every non-admissible block, and also a signature σ′, which verifies for m′ under the original
public key. Sanitizable signatures enforce that either a block cannot be altered at all, or only by a semi-trusted
third party. In a 3SSS, the signer additionally appoints a third party which needs to provide its secret key before
the sanitizer can alter certain blocks.

Related Work and State-of-the-Art for SSS. Sanitizable signatures have been introduced by Ateniese et
al. [2]. Most of the current security properties were formalized by Brzuska et al. [17]. Later on, extensions such as
(strong) unlinkability [19, 21, 36] and non-interactive public accountability [20, 21] were introduced. Additional
extensions such as limiting the sanitizer to certain values [24, 32, 46, 55], multi-sanitizer and multi-signer
environments [18, 21, 25], as well as sanitization of signed encrypted data [30, 34] have been considered. They
have also been used as a tool to make other primitives accountable [54] and to construct other primitives,
such as redactable signatures [12, 50]. We stress that there already exists work in the multiple signer/sanitizer
setting [18, 21, 25], but in their case each sanitizer holds its own key and thus each sanitizer must be involved
for each sanitization. In contrast, in our case, one key is given to the sanitizer once sanitization should be made
possible. Thus, exactly one party can then sanitize as often as it wants.7 More detailed overviews of this field are
already published [13, 31].

The Framework for Three-Party Sanitizable Signature Schemes. Subsequently, we introduce the used
framework for 3SSSs. The definitions are inspired by the ones given by Camenisch et al. [22], which are itself
based on existing work [2, 17, 20, 21, 41, 48]. However, due to our goals, we need to re-define the framework.
Like Camenisch et al., we do not consider “non-interactive public accountability” [20, 21, 45], which allows some
7 In the previous version of this paper this claim was formulated misleading. We hope that this formulation is clearer to
the reader.
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external party to decide which party is accountable, as transparency is mutually exclusive to this property. But
if needed this is very easy to achieve, e.g., by signing the signature again [20].

For brevity, we now set some additional notation. This notation is similar to existing definitions, to make
reading more comfortable [17, 22]. For a message m = (m[1],m[2], . . . ,m[`]), we call m[i] a block, while ` ∈ N
denotes the number of blocks in a message m. The variable ADM is a tuple containing the set of indices of the
admissible blocks and the number ` of blocks in a message m. We write ADM(m) = 1, if ADM is valid w.r.t.
m, i.e., ADM contains the correct ` and all indices are in m. For example, let ADM = ({1, 2, 4}, 4). Then, m
must contain four blocks, while all but the third will be admissible. If we write mi ∈ ADM, we mean that mi is
admissible. MOD is a set containing pairs (i,m[i]′) for those blocks that shall be modified, meaning that m[i] is
replaced with m[i]′. We write MOD(ADM) = 1, if MOD is valid w.r.t. ADM, meaning that the indices to be
modified are contained in ADM. To allow a compact presentation of our construction, we write [X]n,m, with
n ≤ m, for the vector (Xn, Xn+1, Xn+2, . . . , Xm−1, Xm).

Definition 12 (Three-Party Sanitizable Signature). A three-party sanitizable signature scheme 3SSS
consists of nine ppt algorithms (PGen,KGensig,KGensan,TGen,Sign,Sanit,Verify,Proof, Judge) such that:

PGen. On input security parameter λ, it generates the public parameters:

pp3SSS ← PGen(1λ)

We assume that pp3SSS is implicitly input to all other algorithms.
KGensig. It takes the public parameters pp3SSS and returns the signer’s private key and the corresponding public

key:
(sksig, pksig)← KGensig(pp3SSS)

KGensan. It takes the public parameters pp3SSS and returns the sanitizer’s private key and the corresponding
public key:

(sksan, pksan)← KGensan(pp3SSS)
TGen. It takes the public parameters pp3SSS, and returns the private and public trapdoor pair:

(tdpriv, tdpub)← TGen(pp3SSS)

Sign. It takes as input a message m, sksig, pksan, tdpub, as well as a description ADM of the admissible blocks.
If ADM(m) = 0, it returns ⊥. It outputs a signature:

σ ← Sign(m, sksig, pksan, tdpub,ADM)

Sanit. It takes a message m, modification instruction MOD, a signature σ, pksig, sksan and tdpriv. It outputs m′
together with σ′:

(m′, σ′)← Sanit(m,MOD, σ, pksig, sksan, tdpriv)
where m′ ← MOD(m) is message m modified according to the modification instruction MOD. If ADM(m′) =
0, this algorithm returns ⊥.

Verify. It takes as input the signature σ for a message m w.r.t. the public keys pksig, pksan, and tdpub. It outputs
a decision d ∈ {1, 0}:

d← Verify(m,σ, pksig, pksan, tdpub)
This algorithm is deterministic.

Proof. It takes as input sksig, a message m, a signature σ, a set of polynomially many additional message/signature
pairs {(mi, σi)}, pksan and tdpub. It outputs a string π ∈ {0, 1}∗ which can be used by the Judge to decide
which party is accountable given a message/signature pair (m,σ):

π ← Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pksan, tdpub)

12



Experiment Unforgeability3SSS
A (λ)

pp3SSS ← PGen(1λ)
(sksig, pksig)← KGensig(pp3SSS)
(sksan, pksan)← KGensan(pp3SSS)
(m∗, σ∗, tdpub∗)← ASign(·,sksig,·,·,·),Sanit(·,·,·,·,sksan,·)

Proof(sksig,·,·,·,·,·)
(pksig, pksan)

for i = 1, . . . , q let (mi, pksan,i, tdpubi,ADMi), and σi,
index the queries/answers to/from Sign

for j = 1, . . . , q′ let (mj , σj , pksig,j ,MODj , tdprivi),
and (m′j , σ′j), index the queries/answers to/from Sanit

return 1, if Verify(m∗, σ∗, pksig, pksan, tdpub∗) = 1 ∧
∀i ∈ {1, . . . , q} : (pksan,m

∗, tdpub∗) 6= (pksan,i,mi, tdpubi) ∧
∀j ∈ {1, . . . , q′} : (pksig,m

∗, tdpub∗) 6= (pksig,j ,m
′
j , tdpub′j)

return 0

Fig. 11. Unforgeability

Judge. It takes as input a message m, a signature σ, pksig, pksan, tdpub, as well as a proof π. Note, this means
that once a proof π is generated, the accountable party can be derived by anyone for that message/signature
pair (m,σ). It outputs a decision d ∈ {Sig,San,⊥}, indicating whether the message/signature pair has been
created by the signer, or the sanitizer:

d← Judge(m,σ, pksig, pksan, tdpub, π)

Defining correctness of 3SSS is straightforward and therefore omitted.

Security of 3SSSs. Next, we introduce the security model. It is based on the work done for sanitizable
signatures by Brzuska et al. [17]. However, due to our goals, we need to modify it significantly. In the security
framework (for the unforgeability definitions), the public trapdoor tdpub is always generated by the adversary,
as the holder of tdpriv should never be able to generate forgeries. This simplifies our framework significantly, as
an adversary generating tdpub has more power than an adversary only receiving an honestly generated tdpub.

Unforgeability. This definition requires that an adversary A not having any secret keys is not able to produce a
valid signature σ∗ on a new message m∗. As A has full oracle access new means that A has not seen the message
genuinely being signed before.

Definition 13 (Unforgeability). An 3SSS is unforgeable, if for any ppt adversary A there exists a negligible
function ν such that Pr[Unforgeability3SSS

A (λ) = 1] ≤ ν(λ) , where the corresponding experiment is defined in
Fig. 11.

Immutability. A sanitizer must only be able to sanitize the admissible blocks defined by ADM. This also prohibits
deleting or appending blocks from a given message m. The adversary is given full oracle access, while it is also
allowed to generate the sanitizer key pair itself.

Definition 14 (Immutability). An 3SSS is immutable, if for any ppt adversary A there exists a negligible
function ν such that Pr[Immutability3SSS

A (λ) = 1] ≤ ν(λ) , where the corresponding experiment is defined in
Fig. 12.
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Experiment Immutability3SSS
A (λ)

pp3SSS ← PGen(1λ)
(sksig, pksig)← KGensig(pp3SSS)
Q ← ∅
(m∗, σ∗, pk∗, tdpub∗)← ASign′(·,sksig,·,·,·),Proof(sksig,·,·,·,·,·)(pksig)

where Sign′ on input pksan, sksig, m, ADM, tdpub:
for all m′i ∈ {MOD(mi) | MOD with MOD(ADMi) = 1})
let Q ← Q∪ {(pksan, tdpub,m′i)}

return Sign(m, sksig, pksan, tdpub,ADM)
return 1, if Verify(m∗, σ∗, pksig, pk∗, tdpub∗) = 1 ∧

(pk∗, tdpub∗,m∗) /∈ Q
return 0

Fig. 12. Immutability

Experiment Immutability23SSS
A (λ)

pp3SSS ← PGen(1λ)
(tdpriv, tdpub)← TDGen(ppchret)
Q ← ∅
(m∗, σ∗, pk∗sig, pk∗san, π

∗)← ASanit′(·,·,·,·,·,tdpriv)(tdpub)
where Sanit′ on input m, MOD, σ, pksig, sksan, tdpriv:
let (m′, σ′)← Sanit(m,MOD, σ, pksig, sksan, tdpriv)
return ⊥, if Verify(m′, σ′, pksig, pksan, tdpub) = 0
let Q ← Q∪ {(pksig, pksan,m), (pksig, pksan,m

′)}
return Sign(m, sksig, pksan, tdpub,ADM)

return 1, if Judge(m∗, σ∗, pk∗sig, pk∗san, tdpub, π∗) = San ∧
(pk∗sig, pk∗san,m

∗) /∈ Q
return 0

Fig. 13. Immutability2

Immutability2. Even if the signer, and the sanitizer, work together, they must be not able to generate a valid
sanitization, if std is not known. However, as the signer can clearly sign whatever it wants (including any ADM),
we define this immutability property such that the adversary cannot generate a proof π∗ that it sanitized the
message, as it should not be able to do so. The adversary also receives full adaptive oracle access, also for other
pks, modeling the case where for different pks sanitizations where generated.

Definition 15 (Immutability2). An 3SSS is immutable2, if for any ppt adversary A there exists a negligible
function ν such that Pr[Immutability23SSS

A (λ) = 1] ≤ ν(λ) , where the corresponding experiment is defined in
Fig. 13.

Privacy. The notion of privacy is related to the indistinguishability of ciphertexts. The adversary is allowed to
input two messages with the same ADM which are sanitized to the exact same message. The adversary then
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Experiment Privacy3SSS
A (λ)

pp3SSS ← PGen(1λ)
(sksig, pksig)← KGensig(pp3SSS)
(sksan, pksan)← KGensan(pp3SSS)
(tdpriv, tdpub)← TGen(pp3SSS)
b← {0, 1}
a← ASign(·,sksig,·,·,·),Sanit(·,·,·,·,·,sksan,tdpriv),

Proof(sksig,·,·,·,·,·),LoRSanit(·,·,·,·,·,sksig,sksan,tdpriv,b)(pksig, pksan, tdpub)
where LoRSanit on input of
m0, m1, MOD0, MOD1, ADM, sksig, sksan, tdpriv, b
return ⊥, if MOD0(m0) 6= MOD1(m1) ∨ ADM(m0) 6= ADM(m1)
let σ ← Sign(mb, sksig, pksan, tdpub,ADM)
return (m′, σ′)← Sanit(mb,MODb, σ, pksig, sksan, tdpriv)

return 1, if a = b
return 0

Fig. 14. Privacy

has to decide which of the input messages was used to generate the sanitized one. The adversary receives full
adaptive oracle access.

Definition 16 (Privacy). An 3SSS is called private, if for any ppt adversary A there exists a negligible function
ν such that

∣∣∣Pr[Privacy3SSS
A (λ) = 1]− 1

2

∣∣∣ ≤ ν(λ) , where the corresponding experiment is defined in Fig. 14.

Transparency. Transparency guarantees that the accountable party of a message m remains anonymous. This is
important if discrimination may follow from learning that sanitizations have taken place [2, 17]. In a nutshell,
the adversary to transparency has to decide whether it sees a freshly computed signature, or a sanitized one.
The adversary has full (but proof-restricted) oracle access.

Definition 17 ((Proof-Restricted) Transparency). An 3SSS is proof-restricted transparent, if for any ppt
adversary A there exists a negligible function ν such that

∣∣∣Pr[Transparency3SSS
A (λ) = 1]− 1

2

∣∣∣ ≤ ν(λ) , where the
corresponding experiment is defined in Fig. 15.

From now on, we use the term “transparency”, even if we mean proof-restricted transparency.
Signer-Accountability. For signer-accountability, a signer must not be able to blame a sanitizer if the sanitizer is
actually not responsible for a given message. Hence, the adversary A has to generate a proof π∗ which makes
Judge to decide that the sanitizer is accountable, if it is not for a message m∗ output by A. Here, the adversary
gains access to all oracles related to sanitizing.

Definition 18 (Signer-Accountability). An 3SSS is signer-accountable, if for any ppt adversary A there
exists a negligible function ν such that Pr[Sig-Accountability3SSS

A (λ) = 1] ≤ ν(λ) , where the experiment is defined
in Fig. 16.

Sanitizer-Accountability. Sanitizer-accountability requires that the sanitizer cannot blame the signer for a
message/signature pair not created by the signer. In particular, the adversary has to make Proof generate a
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Experiment Transparency3SSS
A (λ)

pp3SSS ← PGen(1λ)
(sksig, pksig)← KGensig(pp3SSS)
(sksan, pksan)← KGensan(pp3SSS)
(tdpriv, tdpub)← TGen(pp3SSS)
b← {0, 1}
Q ← ∅
a← ASign(·,sksig,·,·,·),Sanit(·,·,·,·,·,sksan),Proof′(sksig,·,·,·,·,·)

Sanit/Sign(·,·,·,sksig,sksan,tdpriv,b) (pksig, pksan)
where Proof′ on input of

sksig,m, σ, {(mi, σi) | i ∈ N}, pk′san, tdpub, b:
return ⊥, if pk′san = pksan ∧ (m ∈ Q ∨ ∃(mj , σj) ∈ {(mi, σi) | i ∈ N} : mj ∈ Q)
return Proof(sksig,m, σ, {(mi, σi)}, pk′san, tdpub)

where Sanit/Sign on input of
m,MOD,ADM, sksig, sksan, tdpriv, b:
σ ← Sign(m, sksig, pksan, tdpub,ADM)
(m′, σ′)← Sanit(m,MOD, σ, pksig, sksan, tdpriv)
if b = 1:
σ′ ← Sign(m′, sksig, pksan, tdpub,ADM)

If σ′ 6= ⊥, set Q ← Q∪ {m′}
return (m′, σ′)

return 1, if a = b
return 0

Fig. 15. (Proof-Restricted) Transparency

Experiment Sig-Acc3SSS
A (λ)

pp3SSS ← PGen(1λ)
(sksan, pksan)← KGensan(pp3SSS)
(pk∗, tdpub∗, π∗,m∗, σ∗)← ASanit(·,·,·,·,·,sksan)(pksan)

for i = 1, 2, . . . , q let (m′i, σ′i) and (mi,MODi, σi, pksig,i, tdprivi)
index the answers/queries from/to Sanit

return 1, if Verify(m∗, σ∗, pk∗, pksan, tdpub∗) = 1 ∧
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗, tdpub∗) 6= (pksig,i,m

′
i, tdpub) ∧

Judge(m∗, σ∗, pk∗, pksan, π
∗) = San

return 0

Fig. 16. Signer-Accountability

proof π which makes Judge decide that for a given (m∗, σ∗) generated by A the signer is accountable, while it is
not. Thus, the adversary A gains access to all signer-related oracles, while ptd can always be derived from std by
assumption.

Definition 19 (Sanitizer-Accountability). An 3SSS is sanitizer-accountable, if for any ppt adversary A
there exists a negligible function ν such that Pr[San-Accountability3SSS

A (λ) = 1] ≤ ν(λ) , where the experiment is
defined in Fig. 17.
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Experiment San-Acc3SSS
A (λ)

pp3SSS ← PGen(1λ)
(sksig, pksig)← KGensig(pp3SSS)
(pk∗, tdpub∗,m∗, σ∗)← ASign(·,sksig,·,·,·),Proof(sksig,·,·,·,·,·)(pksig)
for i = 1, 2, . . . , q let (mi,ADMi, pksan,i, tdpubi) and σi

index the queries/answers to/from Sign
π ← Proof(sksig,m

∗, σ∗, {(mi, σi) | 0 < i ≤ q}, pk∗, tdpub∗)
return 1, if Verify(m∗, σ∗, pksig, pk∗, tdpub∗) = 1 ∧
∀i ∈ {1, 2, . . . , q} : (pk∗,m∗, tdpub∗) 6= (pksan,i,mi, tdpubi) ∧
Judge(m∗, σ∗, pksig, pk∗, tdpub∗, π) = Sig

return 0

Fig. 17. Sanitizer Accountability

Unlinkability. In line with Camenisch et al. [22], we do not consider unlinkability [19, 21, 36, 49] in our construction,
as it seems to be very hard to achieve with the underlying construction paradigm.

Definition 20 (Secure 3SSS). An 3SSS secure, if it is correct, private, transparent, unforgeable, immutable,
immutable2, sanitizer-accountable and signer-accountable.

Additional Building Blocks. For the construction, we require PRGs, PRFs and digital signatures (Σs). The
formal definitions are given in App. A.

Construction. Subsequently, we present the construction of 3SSS. The underlying construction paradigm is
an augmented version of the one by Brzuska et al. [17]. In a nutshell, each admissible block is hashed using a
CHDLTT. Then, the hashes (along with the non-admissible blocks) are signed to achieve accountability. Note,
however, that the used CHDLTT is not required to be unique.

Theorem 3. If Σ and CHDLTT are secure, while PRF and PRG are both pseudo-random, then Construction 3
is secure.

We sketch the proof below. The detailed proof of Theorem 3 is given in App. D.

Proof (Sketch). Unforgeability follows from the unforgeability of the underlying signature scheme and the public
collision-resistance of the CHDLTT, as the adversary either needs to find a new signature or a collision in
the hash. Immutability also follows from the unforgeability of the signature scheme, as each fixed block is
signed. Immutability2, however, follows from private collision-resistance, as an adversary must find a collision for
an honestly generated second trapdoor. Privacy and Transparency follow from the indistinguishability of the
CHDLTT and pseudo-randomness of the PRF and PRG. Signer-accountability follows from the collision-resistance
of the CHDLTT, as the proof must contain a collision which has never been published. Sanitizer-Accountability,
follows from the unforgeability of the signature and the pseudo-randomness of PRF (and PRG).

Extensions. Subsequently, we present extensions to our basic scheme. We do not provide full-fledged formal
security frameworks, as they are straightforward extensions to the one provided. However, these alterations
increase the flexibility to delegate actions and may lead to new application scenarios for this primitive, and thus
deserve to be mentioned.
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PGen(1λ): Let ppchret ← PGen(1λ). Return pp3SSS = ppchret.
KGensig(pp3SSS): Let (skΣ , pkΣ)← KGenΣ(1λ). Pick a key for a PRF, i.e., κ← KGenprf(1λ). Return ((κ, skΣ), pkΣ).
KGensan(pp3SSS): Let (skchret, pkchret)← KGen(ppchret). Return (skchret, pkchret).
TGen(pp3SSS): Let (std, ptd)← TDGen(ppchret). Return (std, ptd).
Sign(m, sksig, pksan, tdpub,ADM): If ADM(m) = 0, return ⊥. Draw x ← {0, 1}λ. Let x′ ← Evalprf(κ, x). Let

τ ← Evalprg(x′). For each block i ∈ ADM, do (hi, ri) ← Hash(pkchret, tdpub, (i,m[i], pksig, tdpub)). For each
block i /∈ ADM, let hi ← m[i], and r ← ∅. Let (h0, r0) ← Hash(pkchret, (0,m, x, `, τ, [h]1,`, pksig, tdpub)). Sign
σ ← SignΣ(skΣ , ([h]0,`, `, pksig, pksan,ADM, x, tdpub)). Return (σ′, ([h]0,`,ADM, `, x, τ, [r]0,`)).

Verify(m,σ, pksig, pksan, tdpub): For each block i ∈ ADM, let bi ← Ver(pkchret, tdpub, (i,m[i], pksig, tdpub), ri, hi). Let b0 ←
Ver(pkchret, tdpub, (0,m, x, `, τ, [h]1,`, pksig, tdpub), ri, hi). If any bi = 0, return 0. Return VerifyΣ(pkΣ , ([h]0,`, , `, pksig,
pksan,ADM, x, tdpub), σ′).

Sanit(m,MOD, σ, pksig, sksan, tdpriv): Run b ← Verify(m,σ, pksig, pksan, tdpub). If b = 0, return ⊥. If MOD(ADM) =
0, return ⊥. For each (i,m[i]) ∈ MOD, let r′i ← Adap(skchret, (i,m[i], pksig, tdpub), (i,m′[i], pksig, tdpub), ri, hi, std).
Otherwise, let r′i ← ri. Draw τ ′ ← {0, 1}2λ. Let r′0 ← Adap(skchret, (0,m, x, `, τ, [h]1,`, pksig, tdpub), (0,m′, x, `, τ ′,
[h]1,`, pksig, std), r0, h0, std). Return (σ′, ([h]0,`,ADM, `, x, τ ′, [r′]0,`)).

Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pksan, tdpub): Return ⊥, if 0 = Verify(m,σ, pksig, pksan, tdpub). Verify each signature in
the list, i.e., run di ← Verify(mi, σi, pksig, pksan, tdpub). If for any di = 0, return ⊥. Go through the list of (mi, σi),
and find a (non-trivial) colliding tuple of the chameleon-hash with (m,σ), i.e., h0 = h′0, where also 1 = Ver(pksan, (0,
m, x, `, τ, [h]1,`, pksig, tdpub), r0, h0), and 1 = Ver(pksan, (0,m′, x, `, τ ′, [h]1,`, pksig, tdpub), r′0, h′0) for some different tag
τ ′ or message m′. Let this signature/message pair be (σ′,m′) ∈ {(mi, σi) | i ∈ N}. Return π = ((σ′,m′),PRF(κ, x)),
where x is contained in (σ,m).

Judge(m,σ, pksig, pksan, π, tdpub): Check if π is of the form ((σ′,m′), v) with v ∈ {0, 1}λ. If not, return Sig. Return ⊥,
if 0 = Verify(m′, σ′, pksig, pksan, tdpub), or 0 = Verify(m,σ, pksig, pksan, tdpub). Let τ ′′ ← PRG.Evalprg(v). If τ ′ 6= τ ′′,
return Sig, where τ ′ is taken from (σ′,m′). If we have h0 = h′0, with a non-trivial colliding tuple 1 = Ver(pksan, (0,m,
x, `, τ, [h]0,`, pksig, tdpub), r0, h0) = Ver(pksan, (0,m′, x, `, τ ′, [h]0,`, pksig, tdpub), r′0, h′0), return San. Return Sig.

Construction 3: Secure 3SSS

Always Sanitizable Blocks. In the construction, the sanitizer can only sanitize, if it knows tdpriv. It may,
however, be desirable that the sanitizer can always sanitize certain blocks, while others need tdpriv. This can
easily be achieved by using a standard chameleon-hash instead of CHDLTT for those blocks. A formalization is
straightforward and thus omitted.

Mixing Admissible Blocks. It may also be desirable that some blocks become sanitizable if tdpriv is released, and
others if other tdprivs are released, i.e., there is more than one tdpriv for different blocks. Clearly, this can easily
be achieved by using new tdpubs for each new block, perhaps even the same tdpubs for several blocks. Again, a
formalization is straightforward and thus omitted.

We did not implement and measure any of these schemes, as the additional overhead is essentially one more
single signature and some PRG and PRF evaluations, i.e., the lion’s share is the evaluation of the chameleon-hash.

7 Additional Applications

This section is devoted to sketch some additional application scenarios of our new primitive. These use-cases
include the already mentioned notion of group-level selectively revocable signatures and break-glass signatures.

Group-Level Selectively Revocable Signatures. Revoking (single) signatures is a long-standing open problem [8,
15, 43]. Using CHDLTT, however, we get one step closer to a satisfying solution. In particular, one can extend
chameleon signatures [47] as follows: Instead of signing the hashed message m using the public key (of a standard
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chameleon-hash) of the recipient, one also uses ptd as an identifier for some group, e.g., an employee’s name, or
for a specific task. Then, to revoke signatures bound to this group, one simply releases std, i.e., makes it public,
just as in a standard PKI where revoked public keys are made public. The corresponding ptd can be generated in
advance by some entity, e.g., a server. All revoked signatures must then be considered invalid by a verifier, as all
recipients could “fake” (i.e., adapt) arbitrary messages after revocation for that specific ptd. This is, essentially,
the same argumentation as for standard chameleon signatures. Namely, as now any message can be “signed” by
anyone8 including the recipients, the signature loses all cryptographic value as an authentication of origin.

Break-The-Glass Emergency Signatures. Assume that some employees are not allowed to sign certain messages
under “normal” conditions. Further assume the messages in question are an order form, or an approval, which
requires explicit interaction with the department’s head. If, however, the department’s head is not reachable, e.g.,
due to sickness, but the signature must be generated, a designated employee may get access to some additional
secret which allows to generate exactly this signature. If, however, this secret is revealed, it must be traceable that
the secret was released, which can be enforced using standard policies. Our new primitive allows to technically
map this workflow as follows: The employee able to sign a message in emergency generates a key pair for a
standard signature scheme, but hashes an empty message to the corresponding ptd. The corresponding std can,
e.g., be generated at some server within the same company. The employee can then gain access to std, and can
thus sign any message it wants using Adap. This resembles a more sophisticated version of blank signatures [42].
This also resembles the emergency modes of access control, known as ‘Break-Glass’ or ’Break-The-Glass’ (BTG),
but for signature generation, e.g., those found in hospital information systems [35], and the server can log the
distributed std to generate an audit trail of this emergency event.

8 Conclusion

We have introduced the notion of chameleon-hashes with dual long-term trapdoors. These are a generalization
of chameleon-hashes with ephemeral trapdoors introduced by Camenisch et al. at PKC ’17. They allow that
the second trapdoor can be reused across multiple hashes. This primitive allows for even additional interesting
application scenarios. These include three-party sanitizable signatures, group-level selectively revocable signatures
and break-the-glass signatures. Our implementation’s runtime measurements show that this primitive is practical.
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A Security Definitions of Building Blocks

This appendix presents the security and correctness definitions required for our construction.

Pseudo-Random Functions PRF.

Pseudo-Randomness. In the definition, let Fλ = {f : {0, 1}λ → {0, 1}λ} be the set of all functions mapping a
value x ∈ {0, 1}λ to a value v ∈ {0, 1}λ.

Definition 21 (Pseudo-Randomness). A pseudo-random function PRF is pseudo-random, if for any ppt
adversary A there exists a negligible function ν such that

∣∣ Pr[Pseudo-RandomnessPRF
A (1λ) = 1]− 1

2
∣∣ ≤ ν(λ). The

corresponding experiment is depicted in Fig. 18.
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Pseudo-Random Generators PRG.

Pseudo-Randomness. We require that PRG is actually pseudo-random.

Experiment Pseudo-RandomnessPRF
A (λ)

κ← KGenprf(1λ)
b← {0, 1}
f ← Fλ

a← AEval′prf (κ,·)(1λ)
where Eval′prf on input κ, x:
return ⊥, if x /∈ {0, 1}λ
if b = 0, return Evalprf(κ, x)
return f(x)

return 1, if a = b
return 0

Fig. 18. Pseudo-Randomness

Experiment Pseudo-RandomnessPRG
A (λ)

b← {0, 1}
if b = 0, let v ← {0, 1}2λ

else, let x← {0, 1}λ, and v ← Evalprg(x)
a← A(v)
return 1, if a = b
return 0

Fig. 19. Pseudo-Randomness

Definition 22 (Pseudo-Randomness). A pseudo-random number-generator PRG is pseudo-random, if for any
ppt adversary A there exists a negligible function ν such that

∣∣ Pr[Pseudo-RandomnessPRG
A (1λ) = 1]− 1

2
∣∣ ≤ ν(λ).

The corresponding experiment is depicted in Fig. 19.

Digital Signatures Σ. Subsequently, we give the security properties required.

Correctness. For a signature scheme Σ we require the correctness properties to hold. In particular, we require
that for all λ ∈ N, for all (skΣ , pkΣ)← KGenΣ(1λ), for all m ∈M we have VerifyΣ(pkΣ ,m,SignΣ(skΣ ,m)) = 1.
This definition captures perfect correctness.

Unforgeability. Now, we define unforgeability of digital signature schemes, as given by Goldwasser et al. [40]. In
a nutshell, we require that an adversary A cannot (except with negligible probability) come up with a valid
signature σ∗ for a new message m∗. Moreover, the adversary A can adaptively query for new signatures.

Definition 23 (Unforgeability). A signature scheme Σ is unforgeable, if for any ppt adversary A there exists
a negligible function ν s.t. Pr[eUNF-CMAΣA(1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in Fig. 20.

B Proof of Theorem 1

Proof. Correctness follows from inspection; the remaining properties are proven below.

Indistinguishability. This follows by a simple argument. In particular, consider the following sequence of games.

Game 0: The original indistinguishability game, where b = 1.
Game 1: As Game 0, but instead of calculating the hash h1 as in the game, directly hash.
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Experiment eUNF-CMAΣA(λ)
(skΣ , pkΣ)← KGenΣ(1λ)
Q ← ∅
(m∗, σ∗)← ASign′Σ(skΣ ,·)(pkΣ)
where Sign′Σ on input m:
let σ ← SignΣ(skΣ ,m)
set Q ← Q∪ {m}
return σ

return 1, if VerifyΣ(pkΣ ,m∗, σ∗) = 1 ∧ m∗ /∈ Q
return 0

Fig. 20. Unforgeability

Transition - Game 0 → Game 1: Due to the indistinguishability of the chameleon hashes, this hop only changes
the view of the adversary negligibly. Assume that the adversary can distinguish this hop. We can then
construct an adversary B which breaks the indistinguishability of the chameleon hash. In particular, the
reduction works as follows. B receives pkc as it’s own challenge, B embeds pkc as pkchret, and proceeds as in
the prior hop, with the exception that it uses the HashOrAdapt oracle to generate h1. Then, whatever A
outputs, is also output by B. |Pr[S0]− Pr[S1]| ≤ νch-ind(λ) follows.

Game 2: As Game 1, but instead of calculating the hash h2 as in the game, directly hash.
Transition - Game 1 → Game 2: Due to the indistinguishability of the chameleon hashes, this hop only changes

the view of the adversary negligibly. Assume that the adversary can distinguish this hop. We can then
construct an adversary B which breaks the indistinguishability of the chameleon hashes. In particular, the
reduction works as follows. B receives pk′c as it’s own challenge, B embeds pk′c as ptd, and proceeds as in
the prior hop, with the exception that it uses the HashOrAdapt oracle to generate h2. Then, whatever A
outputs, is also output by B. |Pr[S1]− Pr[S2]| ≤ νch-ind(λ) follows.

We are now in the case b = 0. As each hop only changes the view of the adversary negligibly, this proves that
our construction is indistinguishable.

Public Collision-Resistance. Let A be an adversary which breaks the public-collision resistance of our construction.
We can then construct an adversary B which uses A internally to break the collision-resistance of the underlying
chameleon hash. We do so by a sequence of games:

Game 0: The original public collision-resistance game.
Game 1: As Game 0, but we abort if the adversary A outputs a forgery (m∗, r∗,m′∗, r′∗, ptd∗, h∗).
Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. We can reduce the security to the

collision-resistance of the underlying chameleon-hash. We can now construct an adversary B as follows. It
receives pk′c as the challenge public key. It uses this key to initialize A. As the only oracle B has to simulate
is the Adap′ oracle, it proceeds as follows. On input m,m′, r, std, ptd, h, B first checks, if the hash verifies.
If not, it returns ⊥. Otherwise, B computes r′2 ← CH.Adap(std,m,m′, r2, std2), where m = (pk′c, ptd,m),
and m′ = (pk′c, ptd,m′). Adversary B then queries its own adaption oracle to receive r′1 with the given
m, m′, and r1, and gives (r′1, r′2) to A. At some point, A returns (m∗, r∗,m′∗, r′∗, h∗). Via assumption, we
know that m∗, r∗ w.r.t. m′∗, r′∗ is “fresh”, as m 6= m′ or ptd∗ 6= ptd′∗, as ptd∗ is part of the messages
hashed, i.e., has never been returned by the Adap′ oracle. Thus, B can return (m∗, r∗1 ,m′∗, r′∗1 , h∗1) as its
own forgery attempt. Now, the probability for our reduction to win is exactly Pr[E1]. That is, we have that
|Pr[S0]− Pr[S1]| ≤ νch-coll(λ).
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As the game hop only changes the view of the adversary negligibly, and the adversary has no way to forge a
collision in Game 1, this proves that our construction is publicly collision-resistant.

Private Collision-Resistance. We use the following sequence of games to prove the private collision-resistance of
our construction.

Game 0: The original private collision-resistance game.
Game 1: As Game 0, but the challenger aborts, if the adversary A outputs a valid forgery (pk∗,m∗, r∗,m′∗, r′∗,

h∗).
Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. We can now construct an adversary
B which uses A internally to break the collision-resistance of the underlying chameleon-hash. First, B receives
pk2

ch from its own challenger. This is used as ptd to initialize A. Then proceed as follows. For each query
(with input sk1,i

ch , and m), query the adaption oracle provided by the challenger. The collision w.r.t. sk1,i
ch

can be generated honestly. At some point, A returns (pk∗,m∗, r∗,m′∗, r′∗, h∗). As we know that h∗2 = h′∗2 ,
and (pk∗, ptd,m′∗) must be fresh by assumption, B can return ((pk∗, ptd,m∗), r∗2 , (pk∗, ptd,m′∗), r′∗2 , h∗2) as
its own forgery attempt. Now, the probability for our reduction to win is exactly Pr[E1]. That is, we have
that |Pr[S0]− Pr[S1]| ≤ νch-coll(λ).

As the game hop only changes the view of the adversary negligibly and the adversary has no other way to forge
a collision, this proves that our construction is privately collision-resistant.

Uniqueness. We use the following sequence of games to prove that our construction is unique.

Game 0: The original uniqueness game.
Game 1: As Game 0, but the challenger aborts, if the adversary A outputs a valid forgery (pk∗,m∗,m′∗, r∗,

r′∗, ptd∗, h∗).
Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. We can reduce the security to the

uniqueness of the underlying chameleon-hash by constructing an adversary B which uses A internally. First,
B receives ppchret from its own challenger. This is used to initialize A. At some point, A returns (pk∗,m∗,
m′∗, r∗, r′∗, ptd∗, h∗). As we know that r∗ 6= r′∗ if A wins, it follows that r∗1 6= r′∗1 or r∗2 6= r′∗2 . In the first
case, B can return (pk∗,m′∗, r∗1 , r′∗1 , h∗1) as its own forgery attempt, where m′∗ = (pk∗chret, ptd∗,m∗). In the
other case, it returns (ptd∗,m′∗, r∗2 , r′∗2 , h∗2). Now, the probability for our reduction to win is exactly Pr[E1].
That is, we have that |Pr[S0]− Pr[S1]| ≤ νch-uniqueness(λ).

Thus proves, that our construction is unique.

C Proof of Theorem 2

Proof. We need to prove that our construction is indistinguishable, publicly collision-resistant, and privately
collision-resistant.

Indistinguishability. It is easy to see that the above construction is indistinguishable; all values are chosen
uniformly at random, and RSA defines a permutation with the restrictions given.

Public Collision-Resistance. We now prove that the above construction is collision-resistant.

Game 0: This is the original public collision-resistance game.
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Game 1: As Game 0, but instead of using the e from the system parameters (here, e > n3), we embed the
e received from a one-more RSA challenger as ppchret. Note that we can still determine d—and therefore
honestly simulate all oracles—as we do not use n from the challenger at this point and can thus freely choose
it.

Transition - Game 0 → Game 1: This does not change the view of the adversary, as the received e is distributed
identically to the real game. |Pr[S0]− Pr[S1]| = 0 follows.

Game 2: As Game 1, but we now abort, if the adversary was able to generate a collision (m∗, r∗,m′∗, r′∗, ptd∗,
h∗). Let this event be denoted E2.

Transition - Game 1 → Game 2: Assume that event E2 does happen with non-negligible probability. We can
then build an adversary B which breaks the one-more RSA-inversion assumption. Without loss of generality,
we assume that the adversary makes all the random oracle queries before outputting the messages (otherwise,
B does them). The adversary B proceeds as follows. In the first step, the challenge nc is embedded in
pkchret as n. Clearly, as the distributions are the same, this is only a conceptual change so far. In the
second step, for each new random-oracle query mi with format (m,n, n′) to Hnn′ , B asks its challenge
oracle C to provide a challenge ci ∈ Z∗n. However, it may happen that ci /∈ Z∗nn′ (note, we have a family of
random-oracles!). In this case, request a new ci from the challenge oracle till the condition holds.9 Draw
ui ← Z∗nn′ and record (mi, n

′, ci, ui,⊥). Embed ciuei mod nn′ as the random-oracle response for mi. Note,
this value is distributed perfectly uniformly in Z∗nn′ . However, it remains open how to simulate the adaption
oracle. Assume, for now, that m0 is supposed to be adapted to m1, while the second modulus is n′. If
m0 = m1, or n = n′, proceed as in the algorithm. If there is no tuple (m0, n

′, c0, u0, z0), with z0 6= ⊥, query
the inversion oracle with c0 to receive z0. Update record (m0, n

′, c0, u0,⊥) to (m0, n
′, c0, u0, z0). If there is

no tuple (m1, n
′, c1, u1, z1), with z1 6= ⊥, query the inversion oracle with c1 to receive z1. Update record

(m1, n
′, c1, u1,⊥) to (m1, n

′, c1, u1, z1). Calculate the collision modn as rz0(z1)−1. The collision modn′ can
be calculated honestly, as the factors are known. Combine the result modnn′ using the Chinese remainder
theorem, and return it. Eventually, the adversary returns (m∗, r∗,m′∗, r′∗, ptd∗, h∗). We then know (by
construction) that Hnn′(m∗)r∗e ≡ Hnn′(m′∗)r′∗e mod nn′. If there is no record for m∗ and no record for
m′∗, query the inversion for oracle for the root z∗ for the c∗ embedded in Hnn′(m∗), and update record
(m∗, n′, c∗, r∗,⊥) to (m∗, n′, c∗, u∗, z∗). Then, by definition, we know that m′∗ = (m′′∗, n, ptd∗) is fresh (with
ptd∗ = n′), and there exists a record (m′∗, n′, c′∗, u′∗,⊥). We can then extract Hnn′(m′∗)d by calculating
Hnn′(m′∗)d ≡ r′∗−1z∗r∗ mod nn′, and extract the root of c′∗ by multiplying it with u′∗−1 mod nn′, resulting
in z′∗. As therefore the adversary A has inverted more challenges than the inversion oracle was queried, B can
return the list {(ci, zi)} for each entry where (mi, n

′
i, ci, ri, zi), zi 6= ⊥ exists, along with (c′∗, z′∗ mod n). Note,

the probability for our reduction to win is exactly Pr[E2]. That is, we have that |Pr[S1]−Pr[S2]| ≤ νom-rsa(λ)
follows.

As now the adversary has no other way to win its game, public collision-resistance is proven, as each hop only
changes the view of the adversary negligibly.

Private Collision-Resistance. We now prove that the above construction is collision-resistant.

Game 0: This is the original private collision-resistance game.
Game 1: As Game 0, but instead of using the e from the system parameters (here, e > n3), we embed the

e received from a RSA challenger as ppchret. Note that we can still determine d—and therefore honestly
simulate all oracles—as we do not use n′ from the challenger at this point and can thus freely choose it.

Transition - Game 0 → Game 1: This does not change the view of the adversary, as the received e is distributed
identically to the real game. |Pr[S0]− Pr[S1]| = 0 follows.

9 Camenisch et al. [22] show that this directly provides a polynomial bound on the expected number of needed samples.
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Game 2: As Game 1, but we now abort, if there are random-oracle collisions in any random oracle. Let this
event be E2.

Transition - Game 1 → Game 2: Event E2 cannot happen with non-negligible probability due to the birthday-
bound. |Pr[S1]− Pr[S2]| ≤ q2

h

2λ follows, where qh is the number of random-oracle queries.
Game 3: We now abort, if the adversary was able to output a tuple (pk∗,m∗, r∗,m′∗, r′∗, h∗) which breaks the

private collision-resistance of our construction. Let this event be E3.
Transition - Game 2 → Game 3: Assume that event E3 does happen with non-negligible probability. We can

then build an adversary B which breaks the one-more RSA-inversion assumption. Without loss of generality,
we assume that the adversary makes all the random oracle queries before outputting the messages (otherwise,
B does them). The adversary B proceeds as follows. In the first step, the challenge nc is embedded in ptd
as n′. Clearly, as the distributions are the same, this is only a conceptual change so far. In the second
step, for each new random-oracle query mi with format (m,n, n′) to Hnn′ , B asks its challenge oracle C to
provide a challenge ci ∈ Z∗n. However, it may happen that ci /∈ Z∗nn′ . In this case, request a new ci from the
challenge oracle till the condition holds. As before, this only implies a polynomial loss. Draw ui ← Z∗nn′
and record (mi, n, ci, ui,⊥). Embed ciuei mod nn′ as the random-oracle response for mi. Note, this value
is distributed perfectly uniformly in Z∗nn′ . However, it remains open how to simulate the adaption oracle.
Assume, for now, that m0 is supposed to be adapted to m1, while the second modulus is n (defined by pkch).
If m0 = m1, or n = n′, proceed as in the algorithm. If there is no tuple (m0, n, c0, u0, z0), with z0 6= ⊥,
query the inversion oracle with c0 to receive z0. Update record (m0, n, c0, u0,⊥) to (m0, n, c0, u0, z0). If
there is no tuple (m1, n, c1, u1, z1), with z1 6= ⊥, query the inversion oracle with c1 to receive z1. Update
record (m1, n, c1, u1,⊥) to (m1, n, c1, u1, z1). Calculate the collision mod n′ as rz0(z1)−1. The collision
mod n can be calculated honestly, as the factors are known. Combine the result mod nn′ using the Chinese
remainder theorem, and return it. Eventually, the adversary returns (pk∗,m∗, r∗,m′∗, r′∗, h∗). We then
know (by construction) that Hnn′(m∗)r∗e ≡ Hnn′(m′∗)r′∗e mod nn′. If there is no record for m∗ and no
record for m′∗, query the inversion for oracle for the root z∗ for the c∗ embedded in Hnn′(m∗), and update
record (m∗, n, c∗, r∗,⊥) to (m∗, n, c∗, u∗, z∗). Then, by definition, we know that m′∗ = (m′′∗, pk∗, n′) is fresh
(with pk∗ = n), and there exists a record (m′∗, n, c′∗, u′∗,⊥). We can then extract Hnn′(m′∗)d by calculating
Hnn′(m′∗)d ≡ r′∗−1z∗r∗ mod nn′, and extract the root of c′∗ by multiplying it with u′∗−1 mod nn′, resulting
in z′∗. As therefore the adversary A has inverted more challenges than the inversion oracle was queried, B can
return the list {(ci, zi)} for each entry where (mi, ni, ci, ri, zi), zi 6= ⊥ exists, along with (c′∗, z′∗ mod n). Now,
the probability for our reduction to win is exactly Pr[E3]. That is, we have that |Pr[S2]−Pr[S3]| ≤ νom-rsa(λ)
follows. Thus, private collision-resistance is proven.

As now the adversary has no other way to win its game, private collision-resistance is proven, as each hop only
changes the view of the adversary negligibly.

Uniqueness. We use the following sequence of games to prove that our construction is unique.

Game 0: The original uniqueness game.
Game 1: As Game 0, but the challenger aborts, if the adversary A outputs a valid forgery (pk∗,m∗,m′∗, r∗,

r′∗, ptd∗, h∗).
Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. This cannot happen, as RSA, with

the given restrictions, forms a permutation while random oracle behaves like functions.

Thus this proves, that our construction is unique.

D Proof of Theorem 3

Now we prove the security of Construction 3.
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Proof. Correctness follows by inspection. Each property is proven on its own.

Unforgeability. To prove that our scheme is unforgeable, we use a sequence of games:

Game 0: The original unforgeability game.
Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗, tdpub∗) with σ∗ = (σ′∗, ([h∗]1,`∗ ,

ADM∗, `∗, x∗, τ∗, [r∗]0,`∗)), where m′∗ = ([h∗]1,`∗ , `∗, pk∗sig, pk∗san,ADM∗, x∗, tdpub∗) was never signed by the
signing oracle. Let this event be E1.

Transition - Game 0 → Game 1: Clearly, if ([h∗]1,`∗ , `∗, pk∗sig, pk∗san,ADM∗, x∗, tdpub∗) was never signed by the
challenger, this tuple breaks the unforgeability of the underlying signature scheme. The reduction works as
follows. We obtain a challenge public key pkc from a unforgeability challenger and embed it as pksig. For
every required “inner” signature σ′, we use the signing oracle provided by the challenger. Now, whenever
E1 happens, we can output σ′∗ together with the message protected by σ′∗ as a forgery to the challenger.
That is, E1 happens with exactly the same probability as a forgery. Further, both games proceed identically,
unless E1 happens. Taking everything together yields |Pr[S0]− Pr[S1]| ≤ νeunf-cma(λ).

Game 2: Among others, we now have established that the adversary can no longer win by modifying pksig,
pksan, and tdpub. We proceed as in Game 1, but abort if the adversary outputs a forgery (m∗, σ∗, tdpub∗),
where message m∗, or any of the other values protected by the outer chameleon-hash were never returned by
the signer or the sanitizer oracle. Let this event be E2.

Transition - Game 1 → Game 2: The probability of the abort event E2 to happen is exactly the probability
of the adversary breaking the public collision-freeness for the outer chameleon-hash. Namely, we already
established that the adversary cannot tamper with the inner signature, and therefore the hash value h∗0
must be from a previous oracle query with the same tdpub. Now, assume that we obtain pkc from a
public-collision freeness challenger. If E2 happens, there must be a previous oracle query with associated
values (0,m∗, x∗, `∗, τ∗, [h∗]1,`∗ , pksig, tdpub∗) and r∗0 so that h∗0 is a valid hash with respect to some those
values, and r∗0 . Further, we also have that (0,m∗, x∗, `∗, τ∗, [h∗]1,`∗ , pksig, tdpub∗) 6= (0,m′∗, x′∗, `′∗, τ ′∗,
[h′∗]1,`′∗ , pksig, tdpub∗), and can thus output ((0,m∗, x∗, `∗, τ∗, [h∗]1,`∗ , pksig, tdpub∗), r∗0 , (0,m′∗, x′∗, `′∗, τ ′∗,
[h′∗]1,`′∗ , pksig, tdpub∗), r′∗0 , h∗0, tdpub) as the collision. Thus, the probability that E2 happens is exactly
the probability of a collision for the chameleon-hash. Both games proceed identically, unless E2 happens.
|Pr[S1]− Pr[S2]| ≤ νchret-pub-coll-res(λ) follows.

Now, the adversary can no longer win the unforgeability game; this game is computationally indistinguishable
from the original game, which concludes the proof.

Immutability. We prove immutability using a sequence of games.

Game 0: The immutability game.
Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗, pk∗, tdpub∗) with σ∗ = (σ′∗,

([h∗]1,`∗ ,ADM∗, `∗, x∗, τ∗, [r∗]0,`∗)) where m′∗ = ([h∗]1,`∗ , `∗, pk∗sig, pk∗san,ADM∗, x∗, tdpub∗) was never ob-
tained from the sign oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. Clearly, if ([h∗]1,`∗ ,ADM∗, `∗, x∗, τ∗,
[r∗]0,`∗) was never signed by the challenger, this tuple breaks the unforgeability of the underlying signature
scheme. The reduction works as follows. We obtain a challenge public key pkc from a unforgeability challenger
and embed it as pksig. For every required “inner” signature σ′, we use the signing oracle provided by the
challenger. Now, whenever E1 happens, we can output σ′∗ together with the message protected by σ′∗

as a forgery to the challenger. That is, E1 happens with exactly the same probability as a forgery of the
underlying signature scheme. Further, both games proceed identically, unless E1 happens. Taking everything
together yields |Pr[S0]− Pr[S1]| ≤ νeunf-cma(λ).
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Game 2: As Game 1, but the challenger aborts, if the message m∗ is not derivable from any returned signature.
Let this event be denoted E2. Note, we already know that tampering with the signatures is not possible,
and thus pksig, ADM, tdpub, and pksan, are fixed. The same is true for deleting or appending blocks, as ` is
signed in every case.

Transition - Game 1 → Game 2: Now assume that E2 is non-negligible. Due to prior game hops, we know
that A cannot tamper with the “inner” signatures, and all hashes are signed. Thus, there must exists
another signature σ′′∗ = (σ′′′∗, ([h′∗]0,`′∗ ,ADM′∗, `′∗, x′∗, τ ′∗, [r′∗]0,`′∗)) returned by the signing oracle. This,
however, also implies that there must exists an index i ∈ {1, 2, . . . , `∗} (as `∗ = `′∗), for which we have
Ver(pkch, (i,m∗[i], pksig, tdpub∗), r∗i , h∗i ) = Ver(pkch, (i,m′∗[i], pksig, tdpub∗), r′∗i , h∗i ) = 1, where m∗[i] 6= m′∗[i]
by assumption, but for which ADM does not match. However, tampering with ADM was already ruled out.
|Pr[S1]− Pr[S2]| = 0 follows.

As each hop changes the view of the adversary only negligibly, immutability is proven, as the adversary has no
other way to break immutability in Game 2.

Immutability2. We prove immutability2 using a sequence of games.

Game 0: The immutability2 game.
Game 1: As Game 0, but we abort if the adversary was able to output (m∗, σ∗, pk∗sig, pk∗san, π

∗) with the giving
winning conditions as defined in Fig. 13. Let this event be E1.

Transition - Game 0 → Game 1: Assume that E1 is non-negligible. We can then construct a reduction which
breaks the private collision-resistance of CHDLTT. In particular, the reduction proceeds as follows. By
construction, we know that (0,m∗, x∗, `∗, τ∗, [h∗]1,`∗ , pk∗sig, tdpub) 6= (0,m′∗, x′∗, `′∗, τ ′∗, [h′∗]1,`′∗ , pk∗sig, tdpub),
contained in π, while both have the same hash h∗0. Moreover, we know that either m∗ or pk∗sig is fresh by
definition. The reduction now works as follows. It receives tdpubc from its own challenger, and embeds it as
tdpub. Then, as clarified before, we can return (pk∗san, (0,m∗, x∗, `∗, τ∗, [h∗]1,`∗ , pk∗sig, tdpub), r∗0 , (0,m′∗, x′∗,
`′∗, τ ′∗, [h′∗]1,`′∗ , pk∗sig, tdpub), r′∗0 , h∗0) as its own forgery. |Pr[S0]− Pr[S1]| ≤ νchret-priv-coll-res(λ) follows.

As each hop changes the view of the adversary only negligibly, immutability2 is proven.

Privacy. We now prove privacy; we use a sequence of games. Note, the adversary never sees the non-sanitized
versions of the signature generated by LoRSanit. Thus, the Proof oracle cannot be queried to receive a proof π
for such signatures.

Game 0: The original privacy game.
Game 1: As Game 0, but we abort if the adversary queries a verifying message-signature pair (m∗, σ∗) for

which m∗ was never returned by the signer, or the sanitizer, oracle, to the sanitization, or proof generation,
oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. Clearly, whenever the adversary
queries such a new pair, we can output it to break the unforgeability of our scheme, as this tuple is fresh.
However, we have already proven that this can only happen with negligible probability. |Pr[S0]− Pr[S1]| ≤
ν3sss-unf(λ) follows.

Game 2: As Game 1, but we abort if the adversary outputs a forgery (m∗, σ∗, tdpub∗) with σ∗ = (σ′∗, ([h∗]0,`∗ ,
ADM∗, `∗, x∗, τ∗, [r∗]0,`∗)), where m′∗ = ([h∗]0,`∗ , `∗, pk∗sig, pk∗san,ADM∗, x∗, tdpub∗) was never signed by the
signing oracle. Let this event be E2.

Transition - Game 1 → Game 2: Clearly, if ([h∗]0,`∗ , `∗, pk∗sig, pk∗san,ADM∗, x∗, tdpub∗) was never signed by the
challenger, this tuple breaks the unforgeability of the underlying signature scheme. The reduction works as
follows. We obtain a challenge public key pkc from a unforgeability challenger and embed it as pksig. For
every required “inner” signature σ′, we use the signing oracle provided by the challenger. Now, whenever
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E1 happens, we can output σ′∗ together with the message protected by σ′∗ as a forgery to the challenger.
That is, E1 happens with exactly the same probability as a forgery. Further, both games proceed identically,
unless E1 happens. Taking everything together yields |Pr[S1]− Pr[S2]| ≤ νeunf-cma(λ).

Game 3: As Game 2, but instead of hashing the blocks (i,m∗b [i], pksig, tdpub) for the inner chameleon-hashes
using Hash, and then Adap to (i,m[i]∗, pksig, tdpub), we directly apply Hash to (i,m[i], pksig, tdpub).

Transition - Game 2 → Game 3: Assume that the adversary can distinguish this hop. We can then construct
an adversary B which wins the indistinguishability game. B receives pkc as it’s own challenge, B embeds
pkc as pkch, and ptdc as tdpub, where m[i] is admissible. It proceeds honestly with the exception that it
uses the HashOrAdapt oracle to generate that inner hashes. Then, whatever A outputs, is also output by B.
|Pr[S2]− Pr[S3]| ≤ νchret-ind(λ) follows.

Game 4: As Game 3, but instead of adapting (0,m, x, `, τ, [h]0,`, pksig, tdpub) to the new values, we directly use
Hash.

Transition - Game 3 → Game 4: Assume that the adversary can distinguish this hop. We can then construct an
B which wins the indistinguishability game. B receives pkc as it’s own challenge, B embeds pkc as pkch (and
ptdc as tdpub), and proceeds honestly with the exception that it uses the HashOrAdapt oracle to generate
the outer hashes. Then, whatever A outputs, is also output by B. |Pr[S3]− Pr[S4]| ≤ νchret-ind(λ) follows.

Clearly, we are now independent of the bit b. As each hop changes the view of the adversary only negligibly,
privacy is proven.

Transparency. We prove transparency by showing that the distributions of sanitized and fresh signatures are
indistinguishable. Note, the adversary is not allowed to query Proof for values generated by Sanit/Sign.

Game 0: The original transparency game with b = 0.
Game 1: As Game 0, but we abort if the adversary queries a valid message-signature pair (m∗, σ∗) for which

m∗ was never returned by any of the calls to the sanitization, or signature generation, oracles. Let us use E1
to refer to the abort event.

Transition - Game 0 → Game 1: Clearly, whenever the adversary queries such a new pair, we can output it to
break the unforgeability of our scheme, as this tuple is fresh. A reduction is straightforward. Thus, we have
|Pr[S0]− Pr[S1]| ≤ ν3sss-unf(λ).

Game 2: As Game 1, but we abort if the adversary outputs a forgery (m∗, σ∗, tdpub∗) with σ∗ = (σ′∗, ([h∗]0,`∗ ,
ADM∗, `∗, x∗, τ∗, [r∗]0,`∗)), where m′∗ = ([h∗]0,`∗ , `∗, pk∗sig, pk∗san,ADM∗, x∗, tdpub∗) was never signed by the
signing oracle. Let this event be E2.

Transition - Game 1 → Game 2: Clearly, if ([h∗]0,`∗ , `∗, pk∗sig, pk∗san,ADM∗, x∗, tdpub∗) was never signed by the
challenger, this tuple breaks the unforgeability of the underlying signature scheme. The reduction works as
follows. We obtain a challenge public key pkc from a unforgeability challenger and embed it as pksig. For
every required “inner” signature σ′, we use the signing oracle provided by the challenger. Now, whenever
E1 happens, we can output σ′∗ together with the message protected by σ′∗ as a forgery to the challenger.
That is, E1 happens with exactly the same probability as a forgery. Further, both games proceed identically,
unless E1 happens. Taking everything together yields |Pr[S1]− Pr[S2]| ≤ νeunf-cma(λ).

Game 3: As Game 2, but instead of computing x′0 ← Evalprf(κ, x0), we set x′0 ← {0, 1}λ within every call to
Sign in the Sanit/Sign oracle.

Transition - Game 2 → Game 3: A distinguisher between these two games straightforwardly yields a distin-
guisher for the PRF. Thus, we have |Pr[S2]− Pr[S3]| ≤ νind-prf(λ).

Game 4: As Game 3, but instead of computing τ ← Evalprg(x′0) , we set τ ← {0, 1}2λ for every call to Sign
within the Sanit/Sign oracle.

Transition - Game 3 → Game 4: A distinguisher between these two games yields a distinguisher for the PRG
using a hybrid argument. Thus, we have |Pr[S3]− Pr[S4]| ≤ qsνind-prg(λ), where qs is the number of calls to
the PRG.
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Game 5: As Game 4, but instead of hash and then adapting the inner chameleon-hashes, directly hash
(i,m[i], pksig, tdpub).

Transition - Game 4 → Game 5: Assume that the adversary can distinguish this hop. We can then construct
an adversary B which wins the indistinguishability game. B receives pkc as it’s own challenge, B embeds pkc
as pkch, and ptdc as tdpub. It proceeds honestly with the exception that it uses the HashOrAdapt oracle to
generate that inner hashes. Then, whatever A outputs, is also output by B. |Pr[S4]− Pr[S5]| ≤ νchret-ind(λ)
follows.

Game 6: As Game 5, but instead of hashing and then adapting the outer hash, we directly hash the message,
i.e., (0,m, x, `, τ, [h]1,`, pksig, tdpub).

Transition - Game 5 → Game 6: Assume that the adversary can distinguish this hop. We can then construct
an B which wins the indistinguishability game. In particular, the reduction works as follows. B receives pkc
as it’s own challenge, embeds pkc as pkch (as well as ptdc as tdpub), and proceeds honestly with the exception
that it uses the HashOrAdapt oracle to generate the outer hashes. Then, whatever A outputs, is also output
by B. |Pr[S5]− Pr[S6]| ≤ νchret-ind(λ) follows.

We are in the case b = 1. As each hop only changes the view negligibly, transparency is proven.

Signer-Accountability. We prove that our construction is signer-accountable by a sequence of games.

Game 0: The original strong signer-accountability game.
Game 1: As Game 0, but we abort if the sanitization oracle draws a tag τ ′ which is in the range of the PRG.

Let this event be E1.
Transition - Game 0 → Game 1: This hop is indistinguishable by a standard statistical argument: at most 2λ

values lie in the range of the PRG. |Pr[S0]−Pr[S1]| ≤ qs2λ
22λ = qs

2λ follows, where qs is the number of sanitizing
requests. Note, this also means, that there exists no valid pre-image x.

Game 2: As Game 1, but we abort, if a tag in the sanitization oracle was drawn twice. Let this event be E2.
Transition - Game 1 → Game 2: This hop is indistinguishable due the birthday paradox. |Pr[S1]−Pr[S2]| ≤ q2

s2
2λ

follows, where qs is the number of sanitizing requests.
Game 3: As Game 2, but we now abort, if the adversary was able to find (pk∗, tdpub∗, π∗,m∗, σ∗) for some (0,

m∗, x∗, `∗, τ∗, [h∗]1,`∗ , pk∗, tdpub∗) in (m∗, σ∗), which was never returned by the sanitization oracle. Let this
event be E3.

Transition - Game 2 → Game 3: In the previous games we have already established that the sanitizer oracle
will never return a signature with respect to a tag τ in the range of the PRG. Thus, if event E2 happens, we
know by the conditions checked in Game 2, and Judge, that one of the tags (i.e., τπ in π∗ by construction)
was chosen by the adversary, which, in further consequence, implies a collision for CH. Namely, assume that
E3 happens with non-negligible probability. Then we embed the challenge public key pkc in pkch, and use the
provided adaption oracle to simulate the sanitizing oracle. If E3 happens we can output ((0,m∗, x∗, `∗, τ∗,
[h∗]1,`∗ , pk∗, tdpub∗), r∗0 , (0,m′∗, x′∗, `′∗, τ ′∗, [h′∗]1,`∗ , pk∗, tdpub∗), r′∗0 , h∗0), as a valid collision. These values
can simply be compiled using π∗, m∗, and σ∗. Note, this also means that the adversary cannot tamper
with the “inner” hashes, while each message returned by the sanitization oracle is new, as we excluded
tag-collisions. |Pr[S2]− Pr[S3]| ≤ νchret-pub-coll-res(λ) follows.

In the last game the adversary can no longer win, and each hop only changes the view negligibly. This concludes
the proof.

Sanitizer-Accountability. We prove that our construction is sanitizer-accountable by a sequence of games.

Game 0: The original sanitizer-accountability definition.
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Game 1: As Game 0, but we abort if the adversary outputs a forgery (pk∗, tdpub∗,m∗, σ∗) with σ∗ = (σ′∗,
([h∗]1,`∗ ,ADM∗, `∗, x∗, τ∗, [r∗]0,`∗)), where m′∗ = ([h∗]1,`∗ , `∗, pk∗sig, pk∗san,ADM∗, x∗, tdpub∗) was never signed
by the signing oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. Clearly, if ([h∗]1,`∗ , `∗, pk∗sig, pk∗san,
ADM∗, x∗, tdpub∗) was never obtained from the challenger, this σ′∗ breaks the unforgeability of the underlying
signature scheme. The reduction works as follows. We obtain a challenge public key pkc from a strong
unforgeability challenger and embed it as pksig. For every required “inner” signature σ′, we use the signing
oracle provided by the challenger. Now, whenever E1 happens, we can output σ′∗ together with the message
protected by σ′∗ as a forgery to the challenger. That is, E1 happens with exactly the same probability as
a forgery. Further, both games proceed identically, unless E1 happens. Taking everything together yields
|Pr[S0]− Pr[S1]| ≤ νeunf-cma(λ).

In Game 1 the forgery is different from any query/answer tuple obtained using Sign. Due to the previous hops,
the only remaining possibility is a collision for h∗0 = h′∗0 . In this case, the Judge algorithm returns San, and
Pr[S1] = 0 follows, which concludes the proof.
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