
A New Approach To Efficient Revocable
Attribute-Based Anonymous Credentials?

David Derler, Christian Hanser, and Daniel Slamanig

IAIK, Graz University of Technology, Austria
{david.derler|christian.hanser|daniel.slamanig}@tugraz.at

Abstract. Recently, a new paradigm to construct very efficient multi-
show attribute-based anonymous credential (ABC) systems has been
introduced in Asiacrypt’14. Here, structure-preserving signatures on
equivalence classes (SPS-EQ-R), a novel flavor of structure-preserving
signatures (SPS), and randomizable polynomial commitments are ele-
gantly combined to yield the first ABC systems with O(1) credential
size and O(1) communication bandwidth during issuing and showing. It
has, however, been left open to present a full-fledged revocable multi-
show attribute-based anonymous credential (RABC) system based on
the aforementioned paradigm. As revocation is a highly desired and im-
portant feature when deploying ABC systems in a practical setting, this
is an interesting challenge.

To this end, we propose an RABC system which builds upon the afore-
mentioned ABC system, preserves its nice asymptotic properties and is in
particular entirely practical. Our approach is based on universal accumu-
lators, which nicely fit to the underlying paradigm. Thereby, in contrast
to existing accumulator-based revocation approaches, we do not require
complex zero-knowledge proofs of knowledge (ZKPKs) to demonstrate
the possession of a non-membership witness for the accumulator. This is
in part due to the nice rerandomization properties of SPS-EQ-R. Thus,
this makes the entire RABC system conceptually simple, efficient and
represents a novel direction in credential revocation. We also propose a
game-based security model for RABC systems and prove the security of
our construction in this model. Finally, to demonstrate the value of our
novel approach, we carefully adapt an efficient existing universal accu-
mulator approach (as applied within Microsoft’s U-Prove) to our setting
and compare the two revocation approaches when used with the same
underlying ABC system.

1 Introduction

Credential systems have been envisioned by Chaum [Cha85], with the motivation
to develop a concept that allows users to interact anonymously with multiple
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organizations online. Thereby, a user can obtain a credential for a pseudonym
(nym) from one organization (issuer) and demonstrate possession of the creden-
tial to other organizations (verifiers), without revealing his nym. Later on, this
idea has been formalized as pseudonym systems in [LRSW00] and has, subse-
quently, been further extended and formalized as anonymous credential (AC)
systems in [CL01]. As privacy in digital interactions has become more and more
important over the last decades, various AC systems with different properties and
targeting different environments have been proposed [AMO08, BL13, BCC+09,
Bra00, CL01, CL02a, CL04, CLNR14, CMZ14, GGM14, HM12, Ver01, CDHK].
Today, the most prevalent approaches are IBM’s idemix [CH02] and Microsoft’s
U-Prove [PZ13]. The former is based on CL signatures [CL02a] supporting an
unlimited number of unlinkable showings of a credential (multi-show), where the
latter is based on Brands’ blind signatures [Bra00] and all showings are linkable
(one-show).

While early ACs, such as [CL01], did not put focus on how credentials should
look like, nowadays credentials in ACs are typically viewed as being a collection
of users’ attributes, e.g., birth date, nationality, sex. In such a setting, users
obtain credentials on attributes (issued by some organization). Then, users can
prove possession of these credentials anonymously (and in an unlinkable fashion)
to any verifier. Thereby, they reveal only (the possession of) some attributes and
nothing beyond. Such AC systems are also known as privacy-ABC systems (or
simply ABC systems).

Revocation of ABCs. Efficient revocation of credentials is especially impor-
tant and challenging in practical applications of multi-show ABCs. Unfortu-
nately, this is no trivial task at all. It is clearly not possible to simply blacklist
credentials as it can be conveniently done in PKIs. To realize revocable ABCs
(RABCs), various different credential revocation mechanisms have been intro-
duced over the years (cf. [LKDN11] for an exhaustive discussion). The idea is
that a revocation authority (which may be run by the credential issuer) publishes
revocation information which allows verifiers to decide whether a credential has
been revoked. Ideally, such revocation mechanisms are conceptually simple, scale
well and do not add significant additional burden to users and verifiers. However,
simple mechanisms are either inflexible or far from practical. Examples are the
inclusion of the validity period as attribute into credentials or the re-issuing of all
unrevoked credentials triggered by the replacement of the issuer’s key material.
Obviously, such mechanisms either get insecure due to too long validity periods
(and, thus, too long revocation intervals) or require to frequently re-issue a large
amount of credentials. More importantly, they do not allow to selectively revoke
single credentials in case of loss, theft or fraud.

More sophisticated revocation mechanisms supporting the selective revoca-
tion of single credentials are either based on whitelists or blacklists. Whitelist
approaches require users to prove that unrevoked credentials are contained in
a list. The effort for users (during showings) is typically linear in the number
of valid credentials and/or it requires users to download revocation informa-
tion each time a new credential gets issued. Thus, whitelist approaches do not
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scale well and cannot be considered practical in general. In contrast, blacklist
revocation usually scales far better. The main reason for this is that revocation
list updates are only required on revocation (which usually can be considered a
rare event in comparison to the issuing of new credentials). Thereby, blacklist-
ing approaches based on verifier-local revocation (VLR) [BS04] do not require
any updates from the users, but require an effort for the verifier that is linear
in the number of revoked credentials. Many of the VLR techniques also have
the problem of missing the property of backward unlinkability [Son01], i.e., the
revocation of a credential implies the linkability of all past showings (e.g., as it
is the case in [HM12, LAHV15]). Furthermore, techniques to add backward un-
linkability to VLR either induce a significant additional computational burden
on users and verifiers [Son01] or require frequent updates and computational
overhead for verifiers [NF05]. Another blacklist approach [NFHF09] represents
blacklists as signatures on ordered credential identifier pairs. This is elegant,
since the computational costs for users and verifiers are constant and quite
small. Yet, the user and the verifier have to update a significant amount of re-
vocation information on each revocation, as the blacklist has to be recomputed
entirely (number of signatures linear in the number of revoked credentials). The
remaining and popular choice is to use blacklists based on universal accumula-
tors [ACN13, ATSM09, CKS09, CL02b, Ngu05]. This approach scales well and
requires only constant computational effort for users and verifiers. Although up-
dates of the accumulator and the non-membership witnesses are required on
revocation, these are small and often constant in size.

Design paradigms of existing (R)ABCs. ABC systems are typically con-
structed in the following way (with few exceptions [CL11, CL13]). A user obtains
a signature on (commitments to) attributes using a suitable signature scheme.
Then, on a showing, the user randomizes the signature (such that the resulting
signature is unlinkable to the issued one) and proves in zero-knowledge the pos-
session of a signature. Thereby, attributes may be selectively revealed and/or
relations among attributes may be proven. In one-show ABCs, blind signature
schemes are used, and—instead of randomizing the signatures—the same un-
blinded signature is presented on each showing. A standard way to turn ABCs
into RABCs is to add a credential identifier (revocation handle) as an additional
never-revealed attribute. Then, for the aforementioned approaches which use ex-
plicit ZKPKs, the choice of the revocation mechanisms is somewhat arbitrary.
It only has to be guaranteed that the identifier in the credential and the one
used for blacklisting (or whitelisting) are identical. Hence, the showing in such
an RABC system amounts to providing the ZKPK for the underlying ABC and
the ZKPK of the used revocation mechanism plus an additional ZKPK that the
identifier in the credential coincides with the identifier used for revocation.

Design paradigm of the ABC from [HS]. The ABC system proposed in [HS]
is conceptually significantly different from the aforementioned approach. Its main
building block are structure-preserving signatures on equivalence classes (SPS-
EQ-R). An SPS-EQ-R signs equivalence classes defined on group element vectors
and allows to consistently randomize messages and signatures in the public by
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changing representatives of the signed class. It is used to sign rerandomizable,
constant-size commitments to polynomials. Thereby, the rerandomization of the
commitment is compatible with the rerandomization of the SPS-EQ-R. To per-
form a showing for a subset of the attributes, the (rerandomized) commitment
is partially opened and the rerandomization property of SPS-EQ-R provides un-
linkability, while authenticity is still ensured. Additionally, the approach requires
a single, constant-size ZKPK to prevent replays of already conducted interac-
tive showings. Consequently, the so obtained ABC system does not need costly
ZKPKs to prove possession of the attributes. In particular, [HS] provides the first
ABC system with O(1) credential size and O(1) communication bandwidth dur-
ing both issuing and showing and is thus very efficient. The communication costs
of other existing approaches are at least linear in the number of shown/encoded
attributes in the ABC system (or constant-size showings can only be achieved
for special cases [SNF11, BNF12], e.g., very small attribute domains, at the cost
of huge public parameters—linear in the number of all potential values over all
attribute domains).

Contribution. The efficiency of the ABC system from [HS], e.g., when instanti-
ated with the EUF-CMA secure SPS-EQ-R scheme from [FHS14], makes it very
attractive for practical use. Thus, obtaining an RABC system following the same
paradigm is an important step towards highly efficient and practical RABCs. We
construct an RABC system based on the ABC system in [HS] (which can e.g. be
instantiated with the SPS-EQ-R from [FHS14]), and, thereby, rely on a universal
accumulator-based blacklist approach. In contrast to all previous applications of
universal accumulators to blacklist revocation [LLX07, ATSM09, ACN13, NP14],
we do, however, not require explicit ZKPKs of non-membership witnesses sat-
isfying the accumulator verification equation. We achieve this by rerandomizing
the used universal accumulator, which is a novel way of proving possession of a
particular non-membership witness.

In order to evaluate our approach, we, in addition, carefully adapt an exist-
ing universal accumulator revocation mechanism [ACN13, NP14] (applied within
Microsoft’s U-Prove) to the ABC system from [HS]. Contrary to our first con-
struction, this revocation mechanism represents a traditional ZKPK approach
for demonstrating knowledge of a non-membership witness that satisfies the ac-
cumulator verification equation. Thereby, it turns out that regarding the most
time critical part, i.e., the showing protocol performed by a (potentially resource
constrained [UW14]) user, our approach outperforms the revocation approach
adpoted from U-Prove.

As our revocation mechanisms preserve the asymptotic optimality of the
ABC system in [HS], our RABC constructions are also the first RABC system
with O(1) credential size and O(1) communication costs during issuing as well
as showing.

Revocation in ABC systems is typically considered as an add-on and, thus,
not considered in the security models of ABCs. To overcome this issue, another
contribution of this paper is a comprehensive game-based security model for
RABC systems, which explicitly considers backward-unlinkability. We prove our
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proposed approach secure in this model. Independently to our work, another
formal model for ABC systems has been introduced in [CKL+15]. It also consid-
ers revocation but also additional features such as auditing [CLNR14]. However,
the model in [CKL+15] aims at constructing ABCs by means of a generic com-
position of numerous building blocks (commitment schemes, NIZKPs, privacy-
enhancing attribute-based signatures, revocation schemes and pseudonym sch-
emes), considers only non-interactive protocols (using the notion of tokens) and
uses stronger simulation-based security definitions. In particular the stronger se-
curity notions add a non-trivial overhead in terms of efficiency to the construc-
tions, which, in turn, makes it less attractive for highly efficient and practical
ABC systems.1

2 Preliminaries

Definition 1 (Bilinear Map). Let G1 = 〈P 〉, G2 = 〈P̂ 〉 and GT be cyclic
groups of prime order p, where G1 and G2 are additive and GT is multiplicative.
We call e : G1×G2 → GT a bilinear map or pairing if it is efficiently computable
and the following conditions hold:

Bilinearity: e(aP, bP̂ ) = e(P, P̂ )ab = e(bP, aP̂ ) ∀ a, b ∈ Zp
Non-degeneracy: e(P, P̂ ) 6= 1GT

, i.e., e(P, P̂ ) generates GT .

We use lower-case boldface letters for elements in GT , e.g., g = e(P, P̂ ).

Definition 2 (Bilinear Group Generator). Let BGGen be an algorithm
which takes a security parameter κ and generates a bilinear group BG = (p,G1,
G2,GT , e, P, P̂ ) in the Type-3 bilinear group setting, where the common group
order p of the groups G1,G2 and GT is a prime of bitlength κ, e is a pairing and
P and P̂ are generators of G1 and G2, respectively.

Definition 3 (Discrete Logarithm Assumption). The DL assumption in
Gi states that for all probabilistic polynomial-time (PPT) adversaries A there
is a negligible function ε(·) such that

Pr
[
BG← BGGen(1κ), r←R Zp, r∗ ← A

(
BG, rPi

)
: r∗= r

]
− 1

2
≤ ε(κ),

where P1 = P and P2 = P̂ and i ∈ {1, 2}.

Definition 4 (Decisional Diffie-Hellman Assumption). The DDH assump-
tion in Gi states that for all probabilistic polynomial-time (PPT) adversaries A
there is a negligible function ε(·) such that

Pr

[
b←R {0, 1}, BG← BGGen(1κ), r, s, t←R Zp,
b∗ ← A

(
BG, rPi, sPi, ((1− b) · t+ b · rs)Pi

) : b∗= b

]
− 1

2
≤ ε(κ),

where P1 = P and P2 = P̂ and i ∈ {1, 2}.
1 We, however, note that the efficiency of our scheme comes at the cost of more complex

proofs.

5



Definition 5 (Symmetric External Diffie Hellman Assumption). Let BG
be a bilinear group. The SXDH assumption states that the DDH assumption
holds in G1 and G2.

The following assumption [HS] is the Type-3 bilinear group counterpart of the
strong Diffie-Hellman assumption.

Definition 6 (t-co-Strong Diffie Hellman Assumption). The t-co-SDH∗i
assumption states that for all probabilistic polynomial-time (PPT) adversaries
A there is a negligible function ε(·) such that

Pr

[
α←R Zp, BG← BGGen(1κ),(
c, Ti

)
←R A(BG, (αjP1)tj=0, (α

jP2)tj=0) :
c ∈ Zp \ {−α}
∧ Ti = 1

α+cPi

]
≤ ε(κ),

where P1 = P and P2 = P̂ and i ∈ {1, 2}.

We will use the t-co-SDH∗1 assumption statically, as we will fix t a priori as a
system parameter and assume that it is bounded by poly(κ). Then, the security
loss which applies when using t-co-SDH∗1 in a non-static way [Che06] does not
apply.

2.1 Universal Accumulators

Cryptographic accumulators [BdM93] represent a finite set X as a single succinct
value ΠX and for each x ∈ X one can compute a witness ωx, certifying mem-
bership of x in X . Universal accumulators additionally support non-membership
witnesses ωy that certify non-membership of a value y /∈ X . Henceforth, we write
Π if we do not want to make X = {x1, . . . , xn} explicit. To blacklist credentials,
we require a universal accumulator. Subsequently, we restate the accumulator
of Au et al. [ATSM09] for the Type-3 bilinear group setting and in the model
of [DHS15], where we omit the algorithms that are not required in our context,
i.e., the dynamic features. The formal model is given in Appendix A.2.
For the Type-3 bilinear setting, in analogy to [ATSM09], we can straightfor-
wardly prove the following (where we omit the proof):

Theorem 1. Scheme 1 is collision-free under the t-co-SDH∗i assumption, where
t is the maximum number of values to be accumulated.

2.2 Structure-Preserving Signatures on Equivalence Classes

The notion of structure-preserving signature schemes on equivalence classes
(SPS-EQ-R) has been introduced in [HS]. The authors consider elements of
a vector (Mi)i∈[`] ∈ (G∗1)` (where G∗1 = G1 \ {0G1}, for some prime order group
G1) which share different mutual ratios. These ratios depend on their discrete
logarithms and are invariant under the operation γ : Z∗p × (G∗1)` → (G∗1)` with

(s, (Mi)i∈[`]) 7→ s(Mi)i∈[`]. Thus, one can use this invariance to partition (G∗1)`

into equivalence classes using the relation R = {(M,N) ∈ (G∗1)` × (G∗1)` : ∃s ∈
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GenAcc(BG, t): Given a bilinear group BG and an upper bound t for the number of
elements to be accumulated, pick λ←R Z∗p, compute pkΠ ← ((λiP )i∈[t], (λ

iP̂ )i∈[t])
and return (∅, pkΠ).

EvalAcc(X , (∅, pkΠ)): Given a set X = {x1, . . . , xn} and an accumulator public key

pkΠ , compute π(X) ←
∏
i∈[n](X − xi) =

∑n
i=0 ai · X

i and ΠX ←
∑n
i=0 ai(λ

iP )
and return ΠX together with aux← X .

WitCreateAcc(ΠX , aux, y, (∅, pkΠ)): Given an accumulator ΠX , some auxiliary informa-
tion aux = X = {x1, . . . , xn}, a non-member y and an accumulator public key pkΠ ,
this algorithm checks whether y ∈ X and if so returns ⊥. Otherwise, it computes
π(X)←

∏
i∈[n](X−xi) and d ∈ Z∗p such that π(X) = g(X)(X−y)+d holds. With

g(X) =
∑n−1
i=0 ai ·X

i it computes Ŵ ←
∑n−1
i=0 ai(λ

iP̂ ) and returns ωy ← (Ŵ , d).
VerifyAcc(Π,ωy, y, pkΠ): Given an accumulator Π, a non-membership witness ωy and

some corresponding y, this algorithm parses ωy as (Ŵ , d), checks if d 6= 0 and
e(Π, P̂ ) = e(λP − yP, Ŵ ) · e(dP, P̂ ) holds and if so returns 1 and 0 else.

Scheme 1: Universal Accumulator from [ATSM09] tailored to Non-Membership
Witnesses.

Z∗p such that N = s·M} ⊆ (G∗1)2`. When signing an equivalence class [M ]R with
such a scheme, one actually signs a representative (Mi)i∈[`] of class [M ]R. The
scheme, then, allows to switch to different representatives of the same class and
to update corresponding signatures in the public, i.e., without any secret key.
The initial instantiation proposed in [HS] turned out to only be secure against
random-message attacks (cf. [Fuc14] and the updated full version of [HS]), but
together with Fuchsbauer [FHS14] they subsequently presented a scheme that is
secure against chosen-message attack (EUF-CMA) in the generic group model.

For our RABC, we need a Type-3 bilinear group setting based, EUF-CMA-
secure SPS-EQ-R that perfectly adapts signatures (cf. Appendix A.4 for the
definitions). Scheme 3, presented in Appendix A.4, restates the SPS-EQ-R con-
struction from [FHS14], which satisfies all our requirements.

3 An Efficient RABC System

In an RABC system there are different organizations issuing credentials for dif-
ferent users under different pseudonyms.2 Furthermore, there are revocation au-
thorities which can selectively revoke credentials. Such a system requires that
issuings and showings of the same user are unlinkable and is called multi-
show RABC system when multiple showings carried out by the same user can-
not be linked and one-show RABC system otherwise. A credential cred for
user i under pseudonym nym is issued by an organization j for a set A =
{(attrk, attrVk)}nk=1 of attribute labels attrk and values attrVk. By #A we

2 We stress that in our context pseudonyms are solely used for revocation and not for
showing purposes (as e.g., in the model of [CKL+15]) and thus one might call ours
revocation pseudonyms (but we simply call them pseudonyms henceforth).
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mean the size of A, which is defined to be the sum of cardinalities of all second
components attrVk of all tuples in A. Moreover, we denote by A′ v A a subset
of the credential attributes. In particular, for every k ∈ [n], we have that either
(attrk, attrVk) is missing or (attrk, attrV

′
k) with attrV′k ⊆ attrVk is present.

A showing with respect to A′ only proves that a valid credential for A′ has been
issued, but reveals nothing beyond (selective disclosure). Below, we present our
formal RABC model which is based on the ABC model in [HS].

Definition 7 (RABC System). A revocable attribute-based anonymous cre-
dential (RABC) system consists of the following polynomial time algorithms:

Setup: A probabilistic algorithm that takes a security parameter κ and some
optional auxiliary information aux (which may fix an universe of attributes
and attribute values and other parameters).

RAKeyGen: A probabilistic algorithm that takes input the public parameters pp
and outputs a key pair (rsk, rpk) for the revocation authority.

OrgKeyGen: A probabilistic algorithm that takes input the public parameters
pp and outputs an organization key pair (osk, opk).

UserKeyGen: A probabilistic algorithm that takes input the public parameters
pp and outputs a user key pair (usk, upk).

(Obtain, Issue): These (probabilistic) algorithms are run by user i and organi-
zation j, who interact during execution. Obtain takes input the public pa-
rameters pp, the user’s secret key uski, an organization’s public key opkj , a
pseudonym nym and an attribute set A. Issue takes input the public param-
eters pp, the public key of the revocation authority rpk, the user’s public key
upki, an organization’s secret key oskj , a pseudonym nym and an attribute
set A. At the end, Obtain outputs a credential crednym for A for user i with
respect to nym.

(Show,Verify): These (probabilistic) algorithms are run by user i and a verifier,
who interact during execution. Show takes input public parameters pp, the
public revocation key rpk, the user’s secret key uski, the organization’s public
key opkj , a credential crednym for the attribute set A, a second set A′ v A and
some information Rnym

S to prove that crednym has not been revoked. Verify
takes input pp, rpk, opkj , a set A′ and some revocation information RV . At
the end, Verify outputs 1 or 0 indicating whether the credential showing was
accepted or not.

Revoke: This (probabilistic) algorithm takes input the public parameters pp, the
revocation key pair (rsk, rpk) and two disjoint lists NYM and RNYM holding valid
and revoked pseudonyms, respectively. It outputs the revocation information
R = (RV ,RS). RV is needed for verifying the revocation status and RS is a
list holding the revocation information per nym.

3.1 Security Model for RABCs

The subsequent security model is adapted from [HS]. We note that we consider
only a single organization (identified by j = 1) in our model (since all organiza-
tions have independent signing keys, the extension is straightforward). Basically,
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an RABC system needs to be correct, unforgeable and anonymous. To provide
formal definitions of these properties we introduce several global variables and
oracles. To keep track of all, honest and corrupt users as well as users, whose
secret keys and credentials have leaked, we introduce the sets U, HU, CU and KU,
respectively. Furthermore, we introduce the sets N and RN for keeping track of all
pseudonyms and all revoked pseudonyms, respectively. We use the variables RI

and NYMLoR (initially set to ⊥) to store the globally maintained revocation infor-
mation R and the pseudonyms used in the OLoR oracle. All these sets as well as
RI and NYMRoR are maintained by the environment and are available to the ad-
versary for read access. We use the lists UPK, USK, CRED and ATTR to track issued
user keys, credentials and corresponding attributes (per pseudonym). These lists
are only accessible to the environment. We introduce the subsequent oracles and
assume the public parameters pp to be implicitly available to them:

OHU+(i): It takes input a user identity i. If i ∈ U return ⊥. Otherwise, it creates
a new user i by running (USK[i], UPK[i])← UserKeyGen(pp), adding i to U and
to HU and returning UPK[i].

OCU+(pk, i): It takes input a user public key pk and a user i. If i 6∈ U, i ∈ CU, or
NYMLoR ∩ N[i] 6= ∅ return ⊥. Otherwise, it adds user i to the set of corrupted
users CU, removes i from HU, and sets UPK[i]← pk.

OKU+(i): It takes input a user i. If i 6∈ U, i ∈ KU, or NYMLoR ∩ N[i] 6= ∅ return ⊥.
Otherwise, it reveals the credentials and the secret key of user i by returning
USK[i] and the credentials CRED[nym] for all nym ∈ N[i]. Finally, it adds i to
KU.

ORN+(rsk, rpk, REV): It takes input the revocation secret key rsk, the revoca-
tion public key rpk and a list REV of pseudonyms to be revoked. If REV ∩
RN 6= ∅ or REV 6⊆ N return ⊥. Otherwise, set RN ← RN ∪ REV and RI ←
Revoke(pp, rsk, rpk, N \ RN, RN).

OUIOO(osk, opk, rsk, rpk, i, nym,A): It takes input the organization key pair (osk,
opk), the revocation key pair (rsk, rpk), a user i, a pseudonym nym and a
set of attributes A. If i 6∈ HU or nym ∈ N return ⊥. Otherwise, it issues a
credential cred on A and nym for an honest user i ∈ HU. Here, the oracle
plays the role of the user as well as the organization. It runs

(cred, ∅)← (Obtain(pp, USK[i], opk, nym,A), Issue(pp, rpk, UPK[i], osk, nym,A)).

Finally, it sets (CRED[nym], ATTR[nym])← (cred,A), appends nym to N[i] and
runs RI← Revoke(pp, rsk,rpk, N \ RN, RN), but returns nothing to the caller.

OUI(osk, opk, rsk, rpk, i, nym,A): It takes input the organization key pair (osk,
opk), the revocation key pair (rsk, rpk), a user i, a pseudonym nym and a set
of attributes A. If i 6∈ HU or nym ∈ N return ⊥. Otherwise, it plays the role
of an honest user who gets issued a credential for A and nym. It runs

(cred, ∅)← (Obtain(pp, USK[i], opk, nym,A), Issue(pp, rpk, UPK[i], osk, nym,A)),

where Obtain is run on behalf of honest user i and Issue is executed by the
caller (the dishonest organization). Finally, it sets (CRED[nym], ATTR[nym])←
(cred,A), appends nym to N[i] and runs RI← Revoke(pp, rsk, rpk, N \ RN, RN).
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OOO(osk, opk, rsk, rpk, i, nym, uski,A): It takes input the organization key pair
(osk, opk), the revocation key pair (rsk, rpk), a user i, a pseudonym nym, a
user secret key uski and a set of attributes A. If i 6∈ CU or nym ∈ N return
⊥. Otherwise, it plays the role of the organization when interacting with
a dishonest user, i.e., a corrupted user whose public key has been replaced
(thus, the corresponding secret key uski is not stored in USK). It runs

(cred, ∅)← (Obtain(pp, uski, opk, nym,A), Issue(pp, rpk, UPK[i], osk, nym,A)),

where Obtain is executed by the caller and sets (CRED[nym], ATTR[nym]) ←
(cred,A), appends nym to N[i] and runs RI← Revoke(pp, rsk, rpk, N \ RN, RN).

OUV(opk, rpk, nym,A′,RV ): It takes input the organization public key opk, the
public revocation key rpk, a user i, a pseudonym nym, a set of attributes
A′ certified to the user inym (that is the index such that nym ∈ N[inym]) and
the revocation information RV . If nym /∈ N, inym 6∈ HU, A′ 6v ATTR[nym] or
nym ∈ RN return ⊥. Otherwise, it plays the role of an honest user inym and
runs

(∅, b)←
(
Show(pp, rpk, USK[inym], opk, CRED[nym], ATTR[nym],

A′, RI[2][nym]),Verify(pp, rpk, opk,A′,RV )
)
,

where Verify is executed by the caller (the dishonest verifier).

OLoR(osk, opk, rsk, rpk, b, nym0, nym1,A′,RV ): It takes input the organization and
revocation key pairs (osk, opk) and (rsk, rpk), a bit b, two pseudonyms nym0

and nym1 and a set of attributes A′. It returns ⊥ if for j ∈ {0, 1}

nymj 6∈ N ∨ inymj
6∈ HU ∨ inymj

∈ KU ∨ A′ 6v ATTR[nymj ] ∨ nymj ∈ RN,

where inymj
is such that nymj ∈ N[inymj

]. Else, it adds nym0 and nym1 to
NYMLoR and interacts with the adversary during an execution of the (Show,
Verify) protocol for the credential with the pseudonym nymb and attributes
A′.

Now, we are ready to introduce an exact definition of a secure RABC system:

Definition 8 (Correctness). An RABC system is correct, if

∀κ > 0, ∀aux, ∀A, ∀A′ v A,
∀NYM, RNYM ⊆ N : NYM ∩ RNYM = ∅, ∀nym ∈ NYM,
∀pp← Setup(1κ, aux), ∀(rsk, rpk)← RAKeyGen(pp),
∀(osk, opk)← OrgKeyGen(pp), ∀(usk, upk)← UserKeyGen(pp) :
(cred, ∅)← (Obtain(pp, usk, opk, nym,A), Issue(pp, upk, osk, nym,A)),
(RS ,RV )← Revoke(pp, (rsk, rpk), NYM, RNYM) it holds that
(∅, 1)← (Show(pp, usk, opk, cred,A,A′,RS [nym]),Verify(pp, opk,A′,RV )).
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Definition 9 (Unforgeability). We call an RABC system unforgeable, if for
all PPT adversaries A there is a negligible function ε(·) such that

Pr



pp← Setup(1κ, aux), (rsk, rpk)← RAKeyGen(pp),
(osk, opk)← OrgKeyGen(pp),O ← {OHU+(·),OCU+(·, ·),
OKU+(·),ORN+(rsk, rpk, ·),OUIOO(osk, opk, rsk, rpk, ·, ·, ·),
OUV(opk, rpk, ·, ·, RI[0]),OOO(osk, opk, rsk, rpk, ·, ·, ·, ·)},
(A′∗, state)← AO(pp, opk, rpk),
(∅, b∗)← (A(state),Verify(pp, opk, rpk,A′∗, RI[1])) :

b∗ = 1 ∧
(
nym∗ = ⊥ ∨

(
nym∗ 6= ⊥ ∧(

A′∗ 6v ATTR[nym∗] ∨ (i∗nym∗ ∈ HU \ KU) ∨ nym∗ ∈ RN
)))


≤ ε(κ),

where the credential shown by A in the second phase corresponds to pseudonym
nym∗ and to user i∗nym∗ (that is the index such that nym∗ ∈ N[i∗nym∗ ]). Thereby,
⊥ indicates that no such index nym∗ exists.

The winning conditions in the unforgeability game are chosen following the
subsequent rationale. The first condition (nym∗ = ⊥) captures showings of cre-
dentials, which have never been issued (existential forgeries). The second condi-
tion (nym∗ 6= ⊥∧A′∗ 6v ATTR[nym∗]) captures showings with respect to existing
credentials, but invalid attribute sets. The third condition (nym∗ 6= ⊥ ∧ i∗nym∗ ∈
HU \ KU) covers showings with respect to honest users, whose credentials and
respective secrets the adversary does not know. This essentially boils down to
replayed showings. Finally, the last condition (nym∗ 6= ⊥ ∧ nym∗ ∈ RN) covers
that showings cannot be performed with respect to revoked pseudonyms.

Definition 10 (Anonymity). We call an RABC system anonymous, if for all
PPT adversaries A there is a negligible function ε(·) such that

Pr



pp← Setup(1κ, aux), b←R {0, 1},
(osk, opk)← OrgKeyGen(pp),
(rsk, rpk)← RAKeyGen(pp),
O ← {OHU+(·),OCU+(·, ·),OKU+(·),ORN+(rsk, rpk, ·),
OUI(osk, opk, rsk, rpk, ·, ·, ·),OUV(opk, rpk, ·, ·, RI[0]),
OLoR(osk, opk, rsk, rpk, b, ·, ·, ·, RI[0])},
b∗ ← AO(pp, osk, opk, rsk, rpk)

: b∗ = b


− 1

2
≤ ε(κ).

Observe, that the pseudonyms contained in NYMLoR can later be revoked using
the ORN+ oracle. This explicitly requires that even if pseudonyms get revoked and
the adversary has access to all previous showing transcripts, users still remain
anonymous (backward unlinkability).

4 Construction of the RABC System

We first recall the intuition behind the ABC system in [HS]. Then, we present
the intuition behind our construction and finally we present our RABC system.
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4.1 Intuition of the ABC System

The ABC construction in [HS] requires an EUF-CMA secure SPS-EQ-R scheme
with perfect adaption of signatures and DDH holding on the message space
(subsumed as class-hiding property in [HS]; e.g., Scheme 3). It further requires
randomizable polynomial commitments with factor openings (PolyCommitFO,
cf. [HS]) and one single, constant-size ZKPK to prevent replays of previously
shown credentials. Below, we recall how the building blocks are combined.

In [HS], a credential credi for user i is a vector of two group elements (C1, P )
together with a signature of the organization under the SPS-EQ-R scheme, where
C1 is a polynomial commitment to a polynomial that encodes the attribute set
A of the credential. The encoding of the attribute set A = {(attrk, attrVk)}nk=1

to a polynomial in Zp[X] is defined by the following encoding function, where
H : {0, 1}∗ → Z∗p is a collision-resistant hash function:

enc : A 7→
n∏
k=1

∏
M∈attrVk

(
X −H(attrk‖M)

)
.

Additionally, C1 includes the private key ri corresponding to the public key
Ri = riP of user i.

On a showing for some attribute set A′ v A, a credential owner proceeds
as follows. To achieve unlinkability, the user randomizes the credential using a
random scalar ρ. This is simply done by changing the representative of (C1, P )
with signature σ to the representative ρ(C1, P ) and signature σ′ (using ChgRepR
of SPS-EQ-R). Then, a user provides the randomized credential together with a
selective opening of the polynomial commitment ρC1 with respect to the encod-
ing of the revealed attributes enc(A′). This so called factor opening includes a
consistently randomized witness (by using ρ), attesting that A′ v A while hiding
the unrevealed attribute set A′.3 Thereby, the rerandomization of PolyCommitFO
is compatible with the rerandomization of the SPS-EQ-R scheme. Additionally,
the user provides a ZKPK (denoted PoK) to demonstrate knowledge of ρ in
ρP with respect to P to guarantee freshness, i.e., to prevent replaying of past
showings.

Now, to verify a credential, the verifier starts by checking the signature σ′ on
the obtained credential (ρC1, ρP ) (using the organization’s SPS-EQ-R public
key). Then, it verifies whether the factor opening to enc(A′) is correct with
respect to the randomized polynomial commitment ρC1 (via VerifyFactorPC [HS]).
In particular, it checks whether the polynomial that encodes A′ is indeed a factor
of the polynomial committed to in ρC1 by using the witness to A′ and without
learning anything about A′. By construction this also guarantees that the prover
knows the respective secret key (without revealing it). Furthermore, the verifier
only accepts if PoK holds to guarantee that the showing is fresh (and no replay).

3 Such a witness is basically a consistently randomized commitment (by using ρ) to
A′.
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Example: To illustrate the attribute sets, we restate a short example from [HS].
Suppose that we are given a user with the following attribute set: A = {(age, {>
16, > 18}), (drivinglicense, {#, car})}, where # indicates an attribute value
that proves the possession of an attribute without revealing any concrete value.
A showing could involve the attributes A′ = {(age, {> 18}), (drivinglicense, {
#})} and its hidden complement A′ = {(age, {> 16}), (drivinglicense, {
car})}.

4.2 Incorporating Blacklist Revocation

To enable revocation, we need to augment the credentials in the ABC construc-
tion of [HS] to include a unique nym. Recall that in our context pseudonyms
are more or less credential identifiers that are never being revealed during show-
ings and solely used for revocation purposes. In a nutshell, the revocation au-
thority holds a list of revoked nyms RNYM = {nymi}i∈[n] and unrevoked nyms
NYM = {nymi}i∈[m], respectively. It publishes an accumulator Π, which repre-
sents the list of revoked pseudonyms RNYM. Additionally, the revocation authority
maintains a public list WIT of non-membership witnesses {ωnymi

}i∈[m] for unre-
voked users. An unrevoked user then demonstrates that the nym encoded in the
credential has not been blacklisted, i.e., nym is not contained in the accumulator,
during a showing. We assume that two dummy nyms are initially inserted into
the accumulator so that the accumulator Π as well as witnesses ωnymi

match
the form, which is required for the respective algorithms to work. We emphasize
that, in contrast to existing accumulator-based approaches, we avoid to prove in
zero-knowledge the possession of such a non-membership witness which satisfies
the accumulator verification relation. Furthermore, we note that one could also
allow the users to update their witnesses on their own by using the dynamic
features of the accumulator construction in [ATSM09].

4.3 Our Construction

Our revocation mechanism is based on the observation that the accumulator
in Scheme 1 is compatible with the rerandomizations of the credentials (due to
similarities between Scheme 1 and PolyCommitFO in [HS]). In particular, we ex-
tend the original credential by two values C2 and C3, resulting in a credential
cred = ((C1, C2, C3, P ), σ). We choose the second credential component C2 to be
C2 = ui(λP − nym · P ) (which can directly be used in the VerifyAcc algorithm).
Here, ui is an additional user secret key that is required for anonymity (similar
to the secret ri in C1) and corresponds to Ui = uiP in the augmented public key
(Ri, Ui). Furthermore, for technical reasons, we include a third credential com-
ponent C3 = uiQ, where Q (as in the original scheme) is a random element in G1

with unknown discrete logarithm. During showings, rerandomized versions of the
credential will be presented, which is due to the nature of the credential scheme
in [HS]. To preserve the correctness of the accumulator verification relation, the
prover must present consistently rerandomized versions of the accumulator Π
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Setup: Given (1κ, aux), parse aux ← (t, t′), runs pp′ = (BG, (αiP )i∈[t], (α
iP̂ )i∈[t]) ←

SetupPC(1κ, t) and pp′′ = ((λiP )i∈[t′], (λiP̂ )i∈[t′]) ← GenAcc(BG, t
′). Then, let

g ← e(P, P̂ ) and Hs : {0, 1}∗ → Z∗p be a collision-resistant keyed hash func-
tion used inside enc(·), drawn uniformly at random from a family of collision-
resistant keyed hash functions {(Hs, s)}s∈S . Finally, choose Q←R G1 and output
pp← (Hs, enc, Q,g, pp

′, pp′′).
RAKeyGen: Given pp return (rsk, rpk)← (∅, pp′′).
OrgKeyGen: Given pp, return (osk, opk)← KeyGenR(1κ, ` = 4).
UserKeyGen: Given pp, pick r, u←R Z∗p, compute (R,U) ← (rP, uP ) and return

(usk, upk)← ((r, u), (R,U)).
(Obtain, Issue): Obtain and Issue interact in the following way:

Issue(pp, rpk, upki, oskj , nym,A) Obtain(pp, uski, opkj , nym,A)

e(C1, P̂ ) = e(Ri, enc(A)(α)P̂ ) C1,C2,C3←−−−−−− (C1, C2, C3)← (rienc(A)(α)P,

e(C2, P̂ ) = e(Ui, λP̂ −nym · P̂ ) PoK←−→ ui(λP − nym · P ), uiQ)

σ ← SignR((C1, C2, C3, P ),
σ−→ VerifyR((C1, C2, C3, P ), σ, opkj) = 1

oskj) crednym ← ((C1, C2, C3, P ), σ)

where PoK is: PoK{(ψ) : C3 = ψQ ∧ Ui = ψP}.
(Show,Verify): Show and Verify interact in the following way, where RV = Π ← R[1]

and Rnym
S = (Π, (Ŵ , d))← (R[1],R[2][nym]):

Verify(pp, rpk, opkj ,A
′,RV ) Show(pp, rpk, uski, opkj , crednym,A,A

′,Rnym
S )

ρ, ν←R Z∗p
(Ŵ ′,d′)← (νŴ , e(ρνuidP, P̂ ))

Π ′ ← ρνuiΠ
cred← ChgRepR(crednym, ρ, opkj)[

VerifyR(cred, opkj) ∧
cred,CA′ ,Π

′,Ŵ ′,d′

←−−−−−−−−−−− CA′ ← (ρ · ri) · enc(A′)(α)P

d′ 6= 1GT ∧ VerifyFactorPC(pp′,
C1, enc(A′), CA′) ∧ VerifyAcc(Π

′,

(Ŵ ′,d′), C2, pp
′′)
]

= 1 PoK←−→

where cred = ((C1, C2, C3, C4), σ) and PoK is: PoK{(γ, δ, η, ζ, ψ) : Q = ηP ∨ (C3 =
ψQ ∧ C4 = γP ∧ d′ = gδ ∧ Π ′ = ζΠ)}.

Revoke: Given pp, (rsk, rpk), NYM and RNYM, this algorithm computes Π ←
EvalAcc(RNYM, (∅, pp′′)). Then, for all nym ∈ NYM it computes (W ′nym, dnym) ←
WitCreateAcc(Π, RNYM, nym, (∅, pp′′)), sets WIT[nym] ← (W ′nym, dnym) and returns
R← (Π, WIT).

Scheme 2: Our Multi-Show RABC System.

(and of the non-membership witnesses as well). Apparently, the prover must be
restricted to present only honestly rerandomized versions thereof.4

4 To ensure the authenticity of the rerandomized revocation information, we require
users to prove knowledge of the randomizer used for randomizing the original accu-
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Scheme 2 presents our RABC system, where we require t, t′ to be bounded
by poly(κ). If a check does not yield 1 or a PoK is invalid, the respective algo-
rithm terminates with a failure and the algorithm Verify accepts only if VerifyR,
VerifyFactorPC, VerifyAcc return 1. Note that in Scheme 2, we use a slightly modi-
fied version of the algorithm VerifyAcc, which directly takes d = e(dP, P̂ ) instead
of a scalar d as part of the witness (as done in Scheme 1). This version uses the
verification relation e(Π, P̂ ) = e(λP − yP, Ŵ ) ·d. Also note that the prover can
compute the commitment of the d′-part of the proof using a pairing, which is
typically faster than a corresponding exponentiation in GT in state-of-the-art
pairing implementations. In addition to PoK on the discrete logarithm of d′,
we must also check whether d′ 6= 1 to ensure the correct form of the presented
witness (Ŵ ′,d′) (recall that d 6= 0 is required). Furthermore, the accumulator
Π needs to be available in an authentic fashion. Finally, we note that the first
move in the showing protocol can be combined with the first move of PoK. Thus,
a showing consists of a total of three moves.

4.4 Security of the RABC System

Theorem 2. The RABC system in Scheme 2 is correct.

The correctness of Scheme 2 follows from inspection.

Theorem 3. If PolyCommitFO is factor-sound, {(Hs, s)}s∈S is a collision-res-
istant hash function family, the underlying SPS-EQ-R is EUF-CMA secure and
perfectly adapts signatures, Acc is collision-free and the DDH assumption holds
in G1, then Scheme 2 is unforgeable.

We prove Theorem 3 in Appendix B.1. Now, for anonymity of Scheme 2 we
introduce two plausible assumptions in the Type-3 bilinear group setting.

Definition 11. Let BG be a bilinear group with log2 p = dκe. Then, for every
PPT adversary A there is a negligible function ε(·) such that

Pr

[
b←R {0, 1}, r, s, t, u, v←R Zp, b∗ ← A(BG, rP, rP̂ , sP, sP̂ ,

tP, ruP̂ , stuP,g(1−b)·v+b·ut)
: b∗= b

]
−1

2
≤ ε(κ).

We emphasize that the assumption in Definition 11 can easily be justified in
the uber-assumption framework [Boy08], i.e., by setting R = 〈1, r, s, t, stu〉 ,S =
〈1, r, s, ru〉 ,T = 〈1〉 , f = ut. The subsequent assumption is closely related to the
assumption in Definition 11, but does not fit the uber-assumption framework due
to the decision-part being in G2. Consequently, we analyze the assumption in
the generic group model.

mulator and for proof-technical reasons we require the user to prove knowledge of
logQ C3.
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Definition 12. Let BG be a bilinear group with log2 p = dκe. Then, for every
PPT adversary A there is a negligible function ε(·) such that

Pr

[
b←R {0, 1}, r, s, t, u, v←R Zp, b∗ ← A(BG, rP, rP̂ , sP, sP̂ ,

tP, stuP, ((1− b) · v + b · ru)P̂ )
: b∗= b

]
−1

2
≤ ε(κ).

Proposition 1. The assumption in Definition 12 holds in generic Type-3 bilin-
ear groups and reaches the optimal, quadratic simulation error bound.

The proof of the above proposition is given in Appendix B.2.

Theorem 4. If the underlying SPS-EQ-R perfectly adapts signatures, DDH in
G1 and the assumptions in Definition 11 and 12 hold, then Scheme 2 is anony-
mous.

We prove Theorem 4 in Appendix B.3.

5 Discussion

The presented revocation mechanism for the RABC system uses similar building
blocks as the original ABC system. In particular, it does not use a complex
ZKPK for demonstrating the knowledge of a non-membership witness, which
satisfies the verification relation of the accumulator. It only requires a simple
ZKPK of the dicrete logarithms in d′, Π ′, C3 (and C4 which is already required
in the original ABC system from [HS]) for technical reasons. Consequently, this
concept yields a new direction for revocation in ABC systems.

To evaluate our approach, we additionally adapted the accumulator-based
blacklist revocation from Microsoft’s U-Prove to our setting (see Appendix C
for the adapted scheme and a security proof of this approach in the model pro-
posed in this paper). Here, one uses a (relatively complex) ZKPK of a nym
encoded in a credential and a non-membership witness for the same value nym
such that the verification relation of the accumulator holds. Since in most set-
tings the user is the only resource-constrained entity, it is most reasonable to
compare the two proposed approaches based on the user’s computational ef-
fort. Even though both proposed RABCs can be instantiated with any Type-3
bilinear-group-setting based, EUF-CMA-secure SPS-EQ-R that perfectly adapts
signatures, we instantiate both of them with the one from [FHS14] in our com-
parison. Table 1 shows the number of revocation-induced operations on the user
side: revocation-induced pairing operations, scalar multiplications in G1 and G2

and exponentiations in GT . To obtain a comparable representation, we convert
all operations to their “G1 equivalents” (based on the computation times on
an ARM Cortex-M0+ with a drop-in hardware accelerator [UW14]) and sum
them up, which shows that our approach is up to a factor of 1.65 faster than the
classical approach on constrained devices. We emphasize that this factor even
increases to 2, when using the performance values from the plain ARM-Cortex-
M0+-based implementation in [UW14].
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Scheme 2 G1 G2 GT e Sum

Obtain
Commit 3

PoK 2
VerifyR 2

Sum 5 2

G1 equivalents 5 10 +15

Show
Blind 2 1 1

ChgRep 2
PoK 3 1

Sum 7 1 2

G1 equivalents 7 3 10 +20

Scheme 4 G1 G2 GT e Sum

Obtain
Commit 2

PoK 2
VerifyR 2

Sum 4 2

G1 equivalents 4 10 +14

Show
Blind 8

ChgRep 2
PoK 23

Sum 33

G1 equivalents 33 +33

Table 1. Number of revocation-induced operations for the user. To obtain the G1

equivalents for comparison, we use the performance values of a BN-pairing implemen-
tation (254-bit curves) on an ARM-Cortex-M0+ with a drop-in hardware accelerator,
operating at 48MHz [UW14]. This delivers the following performance values 33ms-
101ms-252ms-164ms (G1-G2-GT -pairing), which we norm to 1-3-7.6-5.
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A Security Models

A.1 Collision Resistant Hashing

Subsequently, we present the model for hash functions from [Kat10], which we
tailor to the bilinear group setting.

Definition 13. A hash function is a pair of PPT algorithms (Gen, H), which
are defined as follows:

Gen(BG): A probabilistic algorithm that takes a bilinear group description BG =
(p,G1,G2,GT , e, P, P̂ ) and outputs a key s (where BG is implicitly contained
in s).

Hs(x): A probabilistic algorithm that takes a key s and some input x ∈ {0, 1}∗,
and outputs a string Hs(x) ∈ Zp.

For security, we require a hash function to be collision resistant, i.e.,

Definition 14 (Collision Resistance). A hash function (Gen, H) is said to
be collision resistant, if for all PPT adversaries A, there is a negligible function
ε(·) such that:

Pr
[
s← Gen(BG), (x, x′)← A(s) : x 6= x′ ∧ Hs(x) = Hs(x

′)
]
≤ ε(κ).

A.2 Formal Accumulator Model

We present the model for bounded accumulators from [DHS15], where we omit
algorithms that we do not require.

Definition 15 (Accumulator). An accumulator is a tuple of efficient algo-
rithms (GenAcc,EvalAcc,WitCreateAcc, VerifyAcc), which are defined as follows:

GenAcc(BG, t): This algorithm takes input the bilinear group parameters BG and
an upper bound t for the number of elements to be accumulated and returns
an accumulator keypair (sk∼Π , pkΠ).

EvalAcc(X , (sk∼Π , pkΠ)): Given a set X of values {x1, . . . , xk} to be accumulated
and a keypair (sk∼Π , pkΠ), this algorithm returns the accumulator ΠX to-
gether with the auxiliary information aux.

WitCreateAcc(ΠX , aux, y, (sk∼Π , pkΠ)): This algorithm takes an accumulatorΠX
with corresponding auxiliary information aux, a value y and a keypair (sk∼Π ,
pkΠ). It returns ⊥, if y is in the accumulator and a witness ωy, attesting
that y is not contained in the accumulator, otherwise.

VerifyAcc(Π, ωy, y, pkΠ): This algorithm takes an accumulator Π, a witness ωy
with corresponding non-member y and an accumulator public key pkΠ and
verifies whether y is a non-member of Π. If so, it returns 1 and 0 otherwise.
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We note that sk∼Π indicates that the secret accumulator key is an optional pa-
rameter and correctness also needs to hold without having access to sk∼Π . The
security requirements for an accumulator are correctness and collision freeness.
Informally, correctness states that the VerifyAcc algorithm returns 1 given an ac-
cumulator and a corresponding, correctly formed witness. Collision freeness in
our setting requires that it is computationally infeasible to find non-membership
witnesses for accumulated values. While we do not formally state correctness
here, collision freeness is formally defined as follows, where we only consider
non-membership witnesses.

Definition 16 (Collision Freeness). An accumulator (GenAcc,EvalAcc,WitCr-
eateAcc,VerifyAcc) is said to be collision-free, if for all PPT adversaries A having
oracle access to O ← {OE(·,·),OW(·,aux,·,·)}, security parameters κ there is a
negligible function ε(·) such that:

Pr

[
(skΠ , pkΠ)← GenAcc(BG, t), (ωxi , xi,X ∗, r)← AO(pkΠ) :

VerifyAcc(pkΠ , Π
∗, ωxi , xi) = 1 ∧ xi ∈ X ∗

]
≤ ε(κ),

where Π∗ ← EvalAcc(X ∗, (skΠ , pkΠ)) and the oracles OE and OW allow the
adversary to execute the EvalAcc and WitCreateAcc algorithms, respectively.

A.3 Proofs of Knowledge

In a proof of knowledge (PoK) [BG92], we consider a binary relationR = {(y, w) :
y ∈ L,w ∈W (y)}, for which membership y ∈ L with

L = {y : ∃w such that R(y, w) = 1}

can be tested in polynomial time (here W (y) denotes the set of witnesses as-
sociated to y). On common input y to a prover and a verifier, the prover with
additional secret input w can convince the verifier that it knows some w ∈W (y),
such that (y, w) ∈ R holds and without disclosing any information about w.
An example for this would be RDL = {(Y, x) : Y ∈ G, Y = xP} for group
G = 〈P 〉 of a prime order p. This can be efficiently proven using three-move
honest-verifier zero-knowledge proofs of knowledge (Σ-protocols) with proofs of
the form (α, β, γ). We recall the special soundness property, which states that
for two transcripts of the form t = (α, β, γ) and t′ = (α, β′, γ′) such that β 6= β′,
there is a polynomial-time knowledge extractor E that on input (t, t′) outputs w′

such thatR(y, w′) = 1. As it is common, we use the notation of [CS97] and denote
a proof of knowledge of a discrete logarithm x = logP Y as PoK{α : Y = αP}
and a transcript as (KY , c, s), where c is the challenge, KY = kP and s = k+xc
mod p.

A.4 Structure-Preserving Signatures on Equivalence Classes

Here, we discuss the abstract model and the security model of an SPS-EQ-R
scheme, as presented in [HS, FHS14] and restate the SPS-EQ-R construction
from [FHS14].
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Definition 17 (Structure-Preserving Signature Scheme on Equivalence
Classes (SPS-EQ-R)). An SPS-EQ-R scheme over Gi (for i ∈ {1, 2}) consists
of the following PPT algorithms:

BGGenR(1κ): A deterministic bilinear-group generation algorithm, which on in-
put a security parameter κ outputs an asymmetric bilinear group BG.

KeyGenR(BG, `): A probabilistic algorithm, which on input an asymmetric bilin-
ear group BG and a vector length ` > 1 outputs a key pair (sk, pk).

SignR(M, sk): A probabilistic algorithm, which given a representative M ∈ (G∗i )`
and a secret key sk outputs a signature σ for the equivalence class [M ]R.

ChgRepR(M,σ, ρ, pk): A probabilistic algorithm, which on input a representative
M ∈ (G∗i )` of class [M ]R, a signature σ for M , a scalar ρ and a public key
pk returns an updated message-signature pair (M ′, σ′), where M ′ = ρ ·M is
the new representative and σ′ its updated signature.

VerifyR(M,σ, pk): A deterministic algorithm, which on input a representative
M ∈ (G∗i )`, a signature σ and a public key pk outputs 1 if σ is valid for M
under pk and 0 otherwise.

VKeyR(sk, pk) is a deterministic algorithm, which given a secret key sk and a
public key pk outputs 1 if the keys are consistent and 0 otherwise.

From an SPS-EQ-R, we require the following correctness property.

Definition 18 (Correctness). An SPS-EQ-R scheme on (G∗i )` is called correct
if for all security parameters κ ∈ N, ` > 1, BG ← BGGenR(1κ), (sk, pk) ←
KeyGenR(BG, `), M ∈ (G∗i )` and ρ ∈ Z∗p:

VKeyR(sk, pk) = 1 and

Pr
[
VerifyR(M, SignR(M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), ρ, pk), pk) = 1

]
= 1.

For EUF-CMA security, outputting a valid message-signature pair, corresponding
to an unqueried equivalence class, is considered to be a forgery.

Definition 19 (EUF-CMA). An SPS-EQ-R scheme on (G∗i )` is existentially un-
forgeable under adaptively chosen-message attacks, if for all PPT algorithms A
with access to a signing oracle O, there is a negligible function ε(·) such that:

Pr

BG← BGGenR(1κ),
(sk, pk)← KeyGenR(BG, `),
(M∗, σ∗)← AO(·,sk)(pk)

:
[M∗]R 6= [M ]R ∀M ∈ Q ∧
VerifyR(M∗, σ∗, pk) = 1

 ≤ ε(κ),

where Q is the set of queries that A has issued to the signing oracle O.

Besides EUF-CMA security, an additional security property for SPS-EQ-R was
introduced in [FHS15].

Definition 20 (Perfect Adaption of Signatures [FHS15]). An SPS-EQ-R
scheme (BGGenR,KeyGenR,SignR,ChgRepR,VerifyR,VKeyR) on (G∗i )` perfectly
adapts signatures if for all tuples (sk, pk,M, σ, ρ) :

VKeyR(sk, pk) = 1 VerifyR(M,σ, pk) = 1 M ∈ (G∗i )` ρ ∈ Z∗p
(ρM,SignR(ρM, sk)) and ChgRepR(M,σ, ρ, pk) are identically distributed.
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BGGenR(1κ): Given a security parameter κ, output BG← BGGen(1κ).
KeyGenR(BG, `): Given a bilinear group description BG and vector length ` > 1, choose

(xi)i∈[`]←
R

(Z∗p)`, set the secret key as sk ← (xi)i∈[`], compute the public key

pk← (X̂i)i∈[`] = (xiP̂ )i∈[`] and output (sk, pk).
SignR(M, sk): Given a representative M = (Mi)i∈[`] ∈ (G∗1)` and secret key sk =

(xi)i∈[`], choose y←R Z∗p and compute Z ← y
∑
i∈[`] xiMi, (Y, Ŷ ) ← 1

y
· (P, P̂ ).

Then, output σ = (Z, Y, Ŷ ) as signature for [M ]R.
ChgRepR(M,σ, ρ, pk): Given a representative M = (Mi)i∈[`] ∈ (G∗1)`, the correspond-

ing signature σ = (Z, Y, Ŷ ), ρ ∈ Z∗p and public key pk, pick ψ←R Z∗p and return

(M ′, σ′), where σ′ ← (ψρZ, 1
ψ
Y, 1

ψ
Ŷ ) is the updated signature for the new repre-

sentative ρ · (Mi)i∈[`].
VerifyR(M,σ, pk): Given a representative M = (Mi)i∈[`] ∈ (G∗1)`, a signature

σ = (Z, Y, Ŷ ) and public key pk = (X̂i)i∈[`], check if
∏
i∈[`] e(Mi, X̂i) =

e(Z, Ŷ ) ∧ e(Y, P̂ ) = e(P, Ŷ ) and if so output 1 and 0 else.
VKeyR(sk, pk): Given sk = (xi)i∈[`] and pk = (X̂i)i∈[`], output 1 if xiP̂ = X̂i ∀i ∈ [`]

and 0 otherwise.

Scheme 3: The SPS-EQ-R Scheme from [FHS14].

Scheme 3 has been proven correct and EUF-CMA-secure in [FHS14] and further
proven to fulfill Definition 20 in [FHS15].

B Security of Scheme 2

B.1 Proof of Theorem 3

Proof. We assume that there is an efficient adversary A winning the unforgeabil-
ity game with non-negligible probability, then we are able to use A for reductions
in the following way.

Type 1: Adversary A manages to conduct a valid showing so that nym∗ = ⊥.
Then, we construct an adversary B that uses A to break the EUF-CMA se-
curity of the SPS-EQ-R.

Type 2: Adversary A manages to conduct a showing protocol accepted by the
verifier using the credential of user i∗ under nym∗ with respect to A′∗ such
that A′∗ 6v ATTR[nym∗] holds. Then, we construct an adversary B that uses
A to break the
Type 2A: collision-resistance of the hash function used in the encoding

enc(·) of attributes.
Type 2B: factor soundness of PolyCommitFO.

Type 3: Adversary A manages to conduct a showing protocol accepted by the
verifier reusing a showing based on the credential of user i∗ under nym∗ with
i∗ ∈ HU\KU, whose secret uski∗ and credentials it does not know. This means
that in any case A is able to produce a valid PoK. Then,
Type 3A: we construct an adversary B that uses A to break the DLP in

G1.
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Type 3B: we show that the success probability ofA is bounded by εDDH(κ)+
εDL(κ), where εDDH(κ) and εDL(κ) are the success probabilities for DDH
and DLP in G1.

Type 4: Adversary A manages to conduct a showing protocol accepted by the
verifier using some credential corresponding to a revoked pseudonym nym∗ ∈
RN. Then, we construct an adversary B that uses A to break the collision-
freeness of the accumulator scheme Acc.

In the following, B guesses A’s strategy, i.e., the type of forgery A will conduct.
We are now going to describe the setup, the initialization of the environment,
the reduction and the abort conditions for each type. For the PoK, we assume
that the reduction always aborts if the respective discrete logarithm cannot be
extracted because the wrong part of the OR statement was honestly computed.
In Type 3B we make the abort probability explicit, whereas it is omitted in the
other cases.

Type 1: Here, B consists of adversary A playing the unforgeability game with
a challenger S. B is interacting with the challenger C in the unforgeability game
of the SPS-EQ-R scheme. Here, B runs algorithm A and plays the challenger S
for A in the unforgeability game. Subsequently, we describe how S simulates the
environment for A and interacts with the challenger C for the EUF-CMA game.

C is in possession of (sk, pk) for the signature scheme with ` = 4 and gives pk
to B. Then, S sets opk← pk and generates the public parameters pp and the re-
vocation key pair (rsk, rpk) in way compatible to opk. Next, S runsA(pp, opk, rpk)
and simulates the environment and the oracles. All oracles are as in a real game,
but whenever S requires a signature it uses the signing oracle O(osk, ·) of C.

If A outputs (A′∗, state), then S runs A(state) and interacts with A as veri-
fier in a showing protocol. Now, if A delivers a valid showing using a credential
cred′∗ and, thus, wins the game, then S rewinds A to the step after sending
the commitments (KQ,KC3 ,KC4 ,kd′ ,KΠ′) in PoK and restarts A with a new
challenge c′ 6= c. Then, by the knowledge extractor of PoK, S obtains ρ. S now
computes cred∗0 ← ρ−1 · cred′∗[0] on the message part of the credential. If there
is some cred′ ∈ CRED such that cred′[0] = cred∗0, then S and, in further con-
sequence, B aborts. In this case, the credential was honestly computed and a
signing query was issued to the signing oracle O of C. Otherwise, B outputs the
message-signature pair cred′∗ as a forgery to C and B wins the unforgeability
game.

Type 2A: Here, B consists of an adversary A playing the unforgeability game
with a challenger S. B is interacting with a challenger C in the collision free-
ness game of the hash function. B runs the setup as in the real game, except
for the choice of (Hs, s), where it hands BG to C and obtains s. Then it runs
A(pp, opk, rpk), where it simulates the oracles as in a real game.

If A outputs (A′∗, state), then B runs A(state) and interacts with A as ver-
ifier in a showing protocol. Now, if A delivers a valid showing using a cre-
dential cred∗, then B rewinds A to the step after sending the commitments
(KQ,KC3 ,KC4 ,kd′ ,KΠ′) in PoK and restarts A with a new challenge c′ 6= c.
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Then, by the knowledge extractor of PoK, B obtains ρ (such that C4 = ρP ).
B now computes cred∗0 ← ρ−1 · cred′∗[0] on the message part of the creden-
tial. Let cred′ ∈ CRED be such that cred′[0] = cred∗0. If there is no such cred′,
then S and, in further consequence, B aborts. Otherwise, let nym∗ be such
that cred′ = CRED[nym∗] with cred′[0] = cred∗0. Then, we know that cred∗nym∗ ←
ChgRepR(cred′∗, ρ−1, pk) is—modulo a rerandomization of the signature part of
the credential—identical to cred′, which arises from an issue step during the
simulation. Consequently, B knows the set of attributes A∗ = ATTR[nym∗] cor-
responding to cred∗nym∗ . If A′∗ v A∗, then B aborts. Else, B can compute the
corresponding polynomial enc(A∗). If enc(A′∗) - enc(A∗), then B aborts. Else,
enc(A′∗) | enc(A∗) holds, but A′∗ 6v A∗. Thus, there is at least one factor
X − Hs(attr

∗
`‖M∗) of enc(A′∗) and one factor X − Hs(attr`‖M) of enc(A∗)

such that Hs(attr
∗
`‖M∗) = Hs(attr`‖M) and attr∗`‖M∗ 6= attr`‖M . Then, B

outputs (attr∗`‖M∗, attr`‖M) as collision in Hs.

Type 2B: Here B, consists of adversary A playing the unforgeability game with
a challenger S. B is interacting with the challenger C in the factor soundness
game of the PolyCommitFO scheme.

C chooses the public parameters pp′ of PolyCommitFO and runs B on pp′.
Then, S completes the setup by generating public parameters pp based on pp′,
generates the organization and revocation key pairs (osk, opk) and (rsk, rpk). S
runs A(pp, opk, rpk) and simulates the oracles as in a real game.

If A outputs (A′∗, state), then S runs A(state) and interacts with A as ver-
ifier in a showing protocol. Now, if A delivers a valid showing using a cre-
dential cred∗, then S rewinds A to the step after sending the commitments
(KQ,KC3 ,KC4 ,kd′ ,KΠ′) in PoK and restarts A with a new challenge c′ 6= c.
Then, by the knowledge extractor of PoK, S obtains ρ (such that C4 = ρP ).
S now computes cred∗0 ← ρ−1 · cred′∗[0] on the message part of the creden-
tial. Let cred′ ∈ CRED be such that cred′[0] = cred∗0. If there is no such cred′,
then S and, in further consequence, B aborts. Otherwise, let nym∗ be such that
cred′ = CRED[nym∗]. Then, we know that cred∗nym∗ ← ChgRepR(cred′∗, ρ−1, pk)
is—modulo a rerandomization of the signature part of the credential—identical
to cred′, which arises from an issue step during the simulation. Consequently,
S knows the set of attributes A∗ = ATTR[nym∗] corresponding to cred∗nym∗ . If
A′∗ v A∗, then S and, in further consequence, B aborts. Else, S can compute
the corresponding polynomial enc(A∗). If enc(A′∗) | enc(A∗), then S and, in fur-
ther consequence, B abort. Else, B outputs (ρ, enc(A∗), enc(A′∗), CA′∗), and wins
the factor soundness game of PolyCommitFO.

Type 3A: Here, B plays the role of the challenger for A. B obtains the instance
(BG, aP ) with BG = (p,G1,G2,GT , e, P, P̂ ) to the DLP in G1. Then, B runs the
setup by generating public parameters pp based on BG and setting Q← aP . It
generates the organization key pair (osk, opk) as well as the revocation key pair
(rsk, rpk), runs A(pp, opk, rpk) and simulates the oracles as in a real game.

If A outputs (A′∗, state), then B runs A(state) and interacts with A as ver-
ifier in a showing protocol. Now, if A delivers a valid showing, then B rewinds
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A to the step after sending the commitments (KQ,KC3
,KC4

,kd′ ,KΠ′) in PoK
and restarts A with a new challenge c′ 6= c. Then, by the knowledge extractor
of PoK (for the Q-part of the proof), B obtains a value a ∈ Zp. If the proof was
honestly computed with respect to Q, B outputs a as a solution to the given
DLP instance and aborts otherwise.

Type 3B: In the following, we will show that the success probability of a Type-
3B adversary is bounded by εDDH(κ) + εDL(κ). In all games, the setup is as in
the original game, with the following differences. Upon generation of the public
parameter pp—instead of choosing Q at random—one chooses q←R Z∗p and sets
Q← qP . Then, the environment stores q as well as the trapdoors α and λ used
for generating the tuples (αiP )ti=0, (α

iP̂ )ti=0 and (λiP )ti=0, (λ
iP̂ )ti=0 contained

in pp.

Game 0: The original unforgeability game.

Game 1: As Game 0, but the PoK in all showings is conducted by honestly
proving knowledge of q and simulating the proof part for the remainder.

Transition 1 - Game 0 → Game 1: Since the witness indistinguishability of the
OR proof is unconditional, we have that Pr[S1] = Pr[S0].

Game 2: As Game 1, except that all calls to ChgRepR(M,σ, ρ, pk) are replaced
by (ρM,SignR(ρM, sk)).

Transition 2 - Game 1 → Game 2: Since Scheme 3 perfectly adapts signatures,
we have Pr[S2] = Pr[S1].

Game 3: As Game 2, but if A delivers a valid showing using a credential
cred∗, then B rewinds the experiment to the step after sending the commit-
ments (KQ,KC3

,KC4
,kd′ ,KΠ′) in PoK and restarts A with a new challenge

c′ 6= c. Then, by the knowledge extractor of PoK (for the C4-part of the proof),
B obtains ρ∗ ∈ Z∗p and is able to determine the pseudonym nym∗ of the shown

credential cred′∗ via computing cred∗0 ← ρ−1 · cred′∗[0] on the message part of
the credential. Let F denote the event that there is no cred′ ∈ CRED such that
cred′[0] = cred∗0 or if i∗nym∗ 6∈ HU \ KU. If F occurs, then B aborts.

Transition 3 - Game 2→ Game 3: Game 3 is equivalent to Game 2, unless abort
event F happens. Event F occurs if and only if A is no Type-3B adversary, thus,
Pr[F ] = 6/7. Thus, Pr[S3] = Pr[¬F ] ·Pr[S2] = (1−Pr[F ]) ·Pr[S2] = 1/7 ·Pr[S2].

Game 4: As in Game 3, but B obtains the instance (BG, aP ) with BG =
(p,G1,G2,GT , e, P, P̂ ) to the DLP in G1 and generates the public parameters
pp based on BG. Furthermore, B simulates the oracles as in a real game, except
for the oracle OUV , which is simulated as follows:

OUV(opk, nym,A′,RV ): B runs this oracle as in a real game, with the difference
that B computes a credential cred ← (M,σ) with M ← (ρ · USK[inym][0] ·
enc(ATTR[nym])P, ρ · USK[inym][1] · (λ − nym)P, ρ · USK[inym][1] · q · aP, ρ · P ),
with ρ←R Zp and σ ← SignR(M, osk). The showing is then performed with
respect to cred.

Transition 4 - Game 3 → Game 4: We have to show that the adversary can-
not detect that the showings in OUV are performed with respect to a different
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credential component C3. To do so, we define the following two distributions
containing the exchanged value C3 and all other values containing discrete log-
arithms related to ρ and q (since we will base our indistinguishability proof on
these values). Thereby, D1 resembles the distribution as in a real oracle simula-
tion, whereas D2 resembles the distribution after exchanging the C3 component
of the credential. Both distributions are defined with respect to the adversary’s
view V on the system.

D1(V ) :≡
[(
enc(A)(α)ri · ρP, (λ− nym)ui · ρP, ui · ρqP, ρP, qP, uiP,

enc(A′)(α)ri · ρP,
(
νui

∏
nym∈RN(λ− nym)

)
· ρP, e

(
(νuid) · ρP, P̂

))]
≈

D2(V ) :≡
[(
enc(A)(α)ri · ρP, (λ− nym)ui · ρP, ui · ρqaP, ρP, qP, uiP,

enc(A′)(α)ri · ρP,
(
νui

∏
nym∈RN(λ− nym)

)
· ρP, e

(
(νuid) · ρP, P̂

))]
.

To show that the distributions above are indistinguishable under DDH, we in-
troduce the following intermediate distribution:

D3(V ) :≡
[
b←R Zp,

(
enc(A)(α)ri · ρP, (λ− nym)ui · ρP, bP, ρP, qP, uiP,

enc(A′)(α)ri · ρP,
(
νui

∏
nym∈RN(λ− nym)

)
· ρP, e

(
(νuid) · ρP, P̂

))]
Now, assume a DDH instance (P, ρP, qP, rP ) and observe that this instance
can easily be padded to the distributions D1 and D3, as we know all required
remaining discrete logarithms. Then, we obtain a distribution identical to D1 if
r = ρq, whereas we obtain a distribution identical to D3 if r is random.

Furthermore, observe that the distributions D3 and D2 are identical, since a
is only contained in ui · ρqaP and (BG, aP ) is a random DLP instance. All in
all, we have |Pr[S3]− Pr[S4]| ≤ εDDH(κ).

Game 5: As Game 4, but B additionally obtains ρ∗ui∗
nym∗

a by the knowledge

extractor of PoK (for the C3 part of the credential).

Transition 5 - Game 4 → Game 5: Since this change is only conceptual, we have
that Pr[S4] = Pr[S5].

In Game 5, B can obtain ui∗
nym∗
← USK[i∗nym∗ ][1] and compute a←

ρ∗ui∗
nym∗

a

ρ∗ui∗
nym∗

as a

solution to the given DLP instance in G1, i.e., Pr[S5] ≤ εDL(κ). We have Pr[S0] =

Pr[S1] = Pr[S2] = Pr[S3]
Pr[¬F ] . Furthermore, we have that |Pr[S3] − Pr[S4]| ≤

εDDH(κ), yielding Pr[S3] ≤ Pr[S4] + εDDH(κ) and Pr[S4] = Pr[S5] ≤ εDL(κ).
Taking all together, we have Pr[¬F ] · Pr[S0] = Pr[S3] ≤ εDDH(κ) + εDL(κ) and
thus Pr[S0] ≤ 1/Pr[¬F ] · (εDDH(κ) + εDL(κ)) = 7 · (εDDH(κ) + εDL(κ)).

Type 4: Here, B consists of adversary A playing the unforgeability game with a
challenger S. B is interacting with the challenger C in the collision-freeness game
of the accumulator scheme Acc. Subsequently, we describe how S simulates the
environment for A and interacts with the challenger C.
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B obtains the accumulator public key pkΠ ← (BG, (λiP )t
′

i=0, (λ
iP̂ )t

′

i=0) from
C. Then, S completes the setup and initializes rpk and the organization key pair
(osk, opk) in a way compatible with pkΠ . S runs A(pp, opk, rpk) and simulates
all oracles as in a real game. If A outputs (A′∗, state), then S runs A(state) and
interacts with A as verifier in a showing protocol. Now, if A delivers a valid show-
ing using a credential cred∗ and revocation information Π ′∗, then S rewinds A
to the step after sending the commitments (KQ,KC3

,KC4
,kd′ ,KΠ′) in PoK and

restarts A with a new challenge c′ 6= c. Rewinding yields the discrete logarithms
ρui, ρ, d∗ and π of C3, C4, d′ and Π ′, respectively. S now computes cred∗0 ←
ρ−1 ·cred′∗[0] on the message part of the credential. Let cred′ ∈ CRED be such that
cred′[0] = cred∗0. If there is no such cred′, then S and, in further consequence, B
aborts. Otherwise, let nym∗ be such that cred′ = CRED[nym∗]. Now, by the veri-
fication relation we know that e(π ·Π, P̂ ) = e(ρui(λ− nym∗)P, Ŵ ′∗) · e(d∗P, P̂ ).
By rearranging, we see that e(Π, P̂ ) = e((λ− nym)P, ρui

π Ŵ ′∗) · e(d
∗

π P, P̂ ), which

means that we can output ((ρui

π Ŵ ′∗, d
∗

π ), nym∗, RNYM) as a non-membership wit-
ness for an accumulated value giving a collision for the accumulator. ut

B.2 Proof of Proposition 1

Proof. Let A be a generic PPT adversary and let σ : G1 → {0, 1}m1 , σ̂ : G2 →
{0, 1}m2 and τ : GT → {0, 1}mT be random encoding functions with w.l.o.g.
m1 < m2 < mT . A cannot work directly with group elements, but is forced to
work with their image under σ, σ̂ and τ . Furthermore, A is given oracle access
to perform generic bilinear group operations (operations in G1, G2 and GT and
pairings). As A is given access to the group element encodings, it can perform
equality checks on its own through string equality tests. At last, we require
that A can only submit already queried encodings to the group oracles (We can
enforce this by choosing m1,m2 and mT large enough making the probability of
guessing bitstrings in the image of σ, σ̂ and τ , respectively, negligible).

Now, let B be an algorithm interacting withA as follows. B picks a random bit
b, picks σ0, . . . , σ4←R {0, 1}m1 as encodings of G1 elements and assigns polyno-
mials 1, R, S, T, STU to these values. Likewise, B picks σ̂0, σ̂1, σ̂2, σ̂5←R {0, 1}m2

as encodings of G2 elements and assigns polynomials 1, R, S, (1− b)V + b ·RU to
these values. B stores (1, σ0), (R, σ1), (S, σ2), (T, σ3), (STU, σ4) in a list L1 and
(1, σ̂0), (R, σ̂1), (S, σ̂2), ((1− b)V + b ·RU, σ̂5) in a list L2 and gives the respective
encodings to A. Then, B initializes a list LT to manage elements of GT and
simulates the group oracles as follows.

Group action in G1: Given two bitstrings σ0, σ1 representing elements in G1,
B recovers the corresponding polynomials f0, f1 ∈ Zp[R,S, T, U ] and com-
putes f0 + f1. If L1 contains f0 + f1, B returns its associated bitstring. Else,
B picks σ←R {0, 1}m1 , returns σ and stores (f0 + f1, σ) in L1.

Inversion in G1: Given a bitstring σ representing an element in G1, B recovers
the corresponding values f ∈ Zp[R,S, T, U ] and computes −f . In case that
L1 already contains −f , B returns its associated bitstring. Otherwise, B
chooses σ′←R {0, 1}m1 , returns σ′ and stores (−f, σ′) in L1.
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Pairing: Given two bitstrings σ, σ̂ representing elements in G1 and G2, B recov-
ers the corresponding values f ∈ Zp[R,S, T, U ] from L1 and f̂ ∈ Zp[R,S, U, V ]

from L2. In case that LT already contains f · f̂ ∈ Zp[R,S, T, U, V ], B returns
its associated bitstring τ . Otherwise, B chooses τ ←R {0, 1}mT , returns τ and

stores (f · f̂ , τ) in LT .

The group action and inversion oracle for G2 and GT are simulated analogously
to those for G1. The ones for G2 consider polynomials from Zp[R,S, U, V ] stored
in list L2 and the ones for GT consider polynomials from Zp[R,S, T, U, V ] stored
in list LT .

When A has finished querying the group oracles, A outputs a bit b∗. Then,
B chooses r, s, t, u, v←R Zp and sets R← r, S ← s, T ← t, U ← u, V ← v.

Now, if the simulation was consistent, no information about b got revealed
and hence A can only guess b with probability 1/2. Nevertheless, the simulation
can be inconsistent, if two distinct polynomials in L1, L2 or LT evaluate to the
same value after choosing concrete values for R,S, T, U, V .

We need to prove that such a collision in L1, L2 and LT cannot be caused
by A itself. All monomials except for STU and RU are independent. Since A is
not given direct access to the encoding of U besides being unable to increase the
degrees of the polynomials in L1 and L2, A is unable to produce collisions in L1

and L2. Observe that the polynomials contained in LT have total degree at most
5, as they arise from the multiplication of polynomials in L1 and L2 and since the
group action and the inversion in GT do not increase the degree of polynomials
in LT . In particular, LT can only contain polynomials consisting of total-degree-
0 monomials, the total-degree-1 monomials arising from degree-0 polynomials in
L1 and total-degree 1 polynomials in L2 or vice-versa and the monomials R2,
RS, S2, RT , ST , RSTU , S2TU , ((1 − b)V + b · RU)R, ((1 − b)V + b · RU)S,
((1− b)V + b · RU)T and ((1− b)V + b · RU)STU . Thus, also in this case A is
not able to generate a collision on purpose.

It remains to be shown that the probability of a collision, where two distinct
polynomials in L1, L2 or LT evaluate to the same value after the substitution
is negligible (or alternatively that their difference polynomial evaluates to 0).
Suppose that A has issued q queries to the group oracles. Let |L1| = O(q),
|L2| = O(q) and |LT | = O(q), then there are O(

(
q
2

)
) possibilities of colliding

polynomials. By the Schwartz-Zippel lemma and the collision argument, the
probability of such an error in the simulation of the generic bilinear group is

O( q
2

p ) and is, thus negligible in the security parameter. ut

B.3 Proof of Theorem 4

Proof. We prove the anonymity of Scheme 2 using a sequence of games, where
each game is indistinguishable from the previous one. Henceforth, we denote the
event that an adversary wins Game i by Si. In all games, the setup is as in
the original game, with the following differences. Upon generation of the public
parameter pp—instead of choosing Q at random—one chooses q←R Z∗p and sets
Q← qP . Then, the environment stores q as well as the trapdoors α and λ used
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for generating the tuples (αiP )ti=0, (α
iP̂ )ti=0 and (λiP )ti=0, (λ

iP̂ )ti=0 contained
in pp.

Game 0: The original anonymity game with b = 0.

Game 1: As Game 0, but the PoK in all showings is conducted by proving
knowledge of q and simulating the proof part for the remainder. Furthermore,
all calls to ChgRepR(M,σ, ρ, pk) are replaced by (ρM, SignR(ρM, sk)).

Transition 1 - Game 0 → Game 1: Since the witness indistinguishability of the
OR proof is unconditional and Scheme 3 perfectly adapts signatures, we have
that Pr[S1] = Pr[S0].

Game 2: As Game 1, except for the oracle OLoR, which is simulated as follows:

OLoR(osk, opk, rsk, rpk, b, nym0, nym1,A′,RV ): As in a real game, but the show-
ing is simulated independently of bit b as follows. S chooses a message
(M1,M2,M3,M4)←R (G∗1)4, sets the shown credential cred← ((M1,M2,M3,
M4), σ), with σ ← SignR((M1,M2,M3,M4), osk). Furthermore, S computes
CA′ ←

1
enc(A′)(α)M1 using trapdoor α. Finally, S picks Π ′←R G1, Ŵ ′←R G2

and computes d′ ← e(Π ′, P̂ )/e(M2, Ŵ
′).

Transition 2 - Game 1→ Game 2: To show that the games are indistinguishable,
we have to show that the adversary will not detect that the showings in OLoR are
performed with respect to a random credential. To do so, we consider a subset V
of the adversary’s view on the system. In particular, in V we consider all values
containing discrete logarithms contained in values which are exchanged in the
transition between Game 2 and Game 3 (all other values are independent, and,
thus, do not give an advantage in the decision).

V =
(
P, P̂ ,Q, enc(A)(α)P, enc(A)(α)P̂ , enc(A′)(α)P, enc(A′)(α)P̂ ,

(λ− nym)P, (λ− nym)P̂ ,W, Ŵ ,Π, Π̂, C4, Ui, Ri, uiQ, rienc(A)P,

ui(λ− nym)P, Ŵ ′, C3, C2, C1, CA′ , Π
′,gρνui

)
.

Note that d′ = gρνuid = e(ρνuiΠ, P̂ )/e(C2, νŴ ) is implicitly contained in V . As
the adversary knows all potential values for d, and, thus, can obtain candidate
values for gρνui , we additionally include gρνui for the correct guess and show
that it is indistinguishable from random. For our illustrations, we further make
the discrete logarithms to the bases P, P̂ and g explicit:

V =
(
P, P̂ , qP, eP, eP̂ , eP, eP̂ ,

nP, nP̂ , wP,wP̂ , aP, aP̂ , ρP, uiP, riP, uiqP, rieP,

uinP, νwP̂ , ρuiqP, ρuinP, ρrieP, ρrieP, ρνuiaP,g
ρνui

)
.
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Now, to distinguish between Game 2 and Game 3, the adversary is required to
distinguish the distributions D1(V ) and D2(V ), which are defined as follows:

D1(V ) :≡
[(
P, P̂ , qP, eP, eP̂ , eP, eP̂ ,

nP, nP̂ , wP,wP̂ , aP, aP̂ , ρP, uiP, riP, uiqP, rieP,

uinP, νwP̂ , ρuiqP, ρuinP, ρrieP, ρrieP, ρνuiaP,g
ρνui

)]
,

D2(V ) :≡
[
a, b, c, d, e, f←R Zp,

(
P, P̂ , qP, eP, eP̂ , eP, eP̂ ,

nP, nP̂ , wP,wP̂ , aP, aP̂ , ρP, uiP, riP, uiqP, rieP,

uinP, aP̂ , bP, cP, dP, de
−1eP, eP,gf

)]
.

As a first step, we can simplify the distributions: The values e, e, n are computa-
tionally hidden via the DDH instances spanned by ui, ρ and ri, ρ, respectively
(the simplified distributions can then simply be padded to D1(V ) and D2(V )).
In particular, we have

D′1(V ) :≡
[(
P, P̂ , qP, wP,wP̂ , aP, aP̂ , ρP, uiP, riP, quiP,

νwP̂ , ρuiqP, ρuiP, ρriP, ρνuiaP,g
ρνui

)]
,

D′2(V ) :≡
[
a, b, c, d, e, f←R Zp,

(
P, P̂ , qP, wP,wP̂ , aP, aP̂ , ρP, uiP, riP, quiP,

aP̂ , bP, cP, dP, eP,gf
)]
.

In addition, we claim that the accumulator function can be interpreted as an
algorithm to randomly sample an element from G1 or G2, respectively. That is,
the values a and w, i.e., the polynomial evaluations of the accumulator and the
witnesses at a random λ contained in the t-SDH tuples in pp, are negligibly close
to uniform.

Claim 1. Let t-co-SDH∗i hold and I = (BG, (λkP1)k∈[t], (λ
kP2)k∈[t]) be a t-co-

SDH∗i instance (i.e., BG = (p,G1,G2,GT , e, P, P̂ ), λ←R Zp and t = poly(κ)).
Let the map gI,i : Ztp → Gi be defined as (xj)j∈[t] 7→

∏
(λ− xj)j∈[t]Pi, where

P1 = P , P2 = P̂ , and i ∈ {1, 2}. Then, for every PPT distinguisher the prob-
ability to distinguish the distribution ensemble {gI,i(X)}X∈Zt

p
from the uniform

distribution {Un}Un∈G1 by a polynomial number s(κ) of samples is a negligible
function in the security parameter κ. That is, the distributions are computation-
ally indistinguishable by multiple samples [Gol08].

Proof (of Claim 1). To see that Claim 1 holds, assume that {gI,i(X)}X∈Zt
p

is
not negligibly close to uniform. In other words, this means that one can sample
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X,X ′ such that
∏
x`∈X(λ− x`) =

∏
xm∈X′(λ− xm) in PPT with non-negligible

probability. Solving the equation with respect to λ allows to output arbitrary
t-co-SDH∗i solutions with non-negligible probability. ut

Now, we can further simplify D′1(V ) and D′2(V ) to D′1 and D′2:

D′1 :≡
[
a, b, c, d, e, f, g←R Zp,(

P, P̂ , aP, bP, bP̂ , cP, cP̂ , dP, eP, fP, aeP, bgP̂ , aedP, edP, dfP, dgecP,gdge
)]
,

D′2 :≡
[
a, b, c, d, e, f, a, b, c, d, e, f←R Zp,(

P, P̂ , aP, bP, bP̂ , cP, cP̂ , dP, eP, fP, aeP, aP̂ , bP, cP, dP, eP,gf
)]
.

What remains is to prove that D′1 and D′2 are indistinguishable:

Lemma 1. If the DDH assumption holds in G1 and the assumptions in Def-
inition 11 and 12 hold, then for every PPT adversary A, there is a negligible
function εD(·) such that the probability to distinguish D′1 from D′2 is bounded by
εD′(κ).

Proof (of Lemma 1). We show that—under the assumptions in Definition 11
and 12 and under the DDH assumption in G1—the probability to distinguish
D′1 and D′2 is bounded by a negligible function in the security parameter κ,
i.e., εD(κ). We do so by a sequence of intermediate distributions. We start by
introducing D′3:

D′3 :≡
[
a, b, c, d, e, f, g, f←R Zp,(

P, P̂ , aP, bP, bP̂ , cP, cP̂ , dP, eP, fP, aeP, bgP̂ , aedP, edP, dfP, dgecP,gf
)]
.

D′1 and D′3 are indistinguishable under the assumption in Definition 11. Assume
an instance (P, P̂ , rP, rP̂ , sP, sP̂ , tP, ruP̂ , stuP,gr) = (P, P̂ , bP, bP̂ , cP, cP̂ , dP,
bgP̂ , gdcP,gr). We can choose a, e, f ←R Zp and obtain (P, P̂ , aP, bP, bP̂ , cP, cP̂ ,

dP, eP, fP, aeP, bgP̂ , aedP, edP, dfP, dgecP,gre
)
. Then, if r = dg, we obtain a

distribution identical to D′1, whereas we obtain distribution identical to D′3 if r
is random. We introduce D′4:

D′4 :≡
[
a, b, c, d, e, f, g, a, f←R Zp,(

P, P̂ , aP, bP, bP̂ , cP, cP̂ , dP, eP, fP, aeP, aP̂ , aedP, edP, dfP, dgecP,gf
)]
.

D′3 is indistinguishable from D′4 under the assumption in Definition 12. Assume a
corresponding instance (P, P̂ , rP, rP̂ , sP, sP̂ , tP, stuP, rP̂ ) = (P, P̂ , bP, bP̂ , cP,
cP̂ , eP, gecP, rP̂ ). We can choose a, d, f, f←R Zp and obtain (P, P̂ , aP, bP, bP̂ , cP,
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cP̂ , dP, eP, fP, aeP, rP̂ , aedP, edP, dfP, dgecP,gf). If r = bg we obtain a distri-
bution identical to D′3, whereas we obtain a distribution identical to D′4 if r is
random. We introduce D′5:

D′5 :≡
[
a, b, c, d, e, f, g, a, e, f←R Zp,(
P, P̂ , aP, bP, bP̂ , cP, cP̂ , dP, eP, fP, aeP, aP̂ , aedP, edP, dfP, eP,gf

)]
.

It is easy to see that D′4 and D′5 are identically distributed, since g only occurs
in dgecP . This means that dgecP already looks random in D′4. Hence, in D′5 we
can substitute it by e←R Zp. We introduce D′6:

D′6 :≡
[
a, b, c, d, e, f, g, a, e, f, g←R Zp,(
P, P̂ , aP, bP, bP̂ , cP, cP̂ , dP, eP, fP, aeP, aP̂ , agP, gP, dfP, eP,gf

)]
.

Under DDH,D5 is indistinguishable fromD6. Assume a DDH instance (P, rP, sP,
rP ) = (P, dP, eP, rP ). We can choose a, b, c, f, g, a, e, f←R Zp and obtain (P, P̂ , aP,

bP, bP̂ , cP, cP̂ , dP, eP, fP, aeP, aP̂ , arP, rP, dfP, eP,gf
)
. Then, if r = de, we have

a distribution as in D5, whereas we have a distribution as in D6 if r is random.
Now, we introduce D7:

D′7 :≡
[
a, b, c, d, e, f, g, a, b, e, f, g←R Zp,(
P, P̂ , aP, bP, bP̂ , cP, cP̂ , dP, eP, fP, aeP, aP̂ , bP, gP, dfP, eP,gf

)]
.

Under DDH,D′6 is indistinguishable fromD′7. Assume a DDH instance (P, rP, sP,
rP ) = (P, gP, aP, rP ). We can choose b, c, d, e, f, g, a, e, f, g←R Zp and obtain

(P, P̂ , aP, bP, bP̂ , cP, cP̂ , dP, eP, fP, aeP, aP̂ , rP, gP, dfP, eP,gf). Then, if r = ag
we have a distribution as in D′6, whereas we have a distribution as in D′7 if r is
random. Below, we introduce D′8:

D′8 :≡
[
a, b, c, d, e, f, g, a, b, c, e, f←R Zp,(

P, P̂ , aP, bP, bP̂ , cP, cP̂ , dP, eP, fP, aeP, aP̂ , bP, cP, dfP, eP,gf
)]
.

It is immediate that D′7 and D′8 are identically distributed. Finally, under DDH
in G1, D′8 is indistinguishable from D′2. Assume a DDH instance (P, rP, sP, rP ) =
(P, dP, fP, rP ). We can choose a, b, c, e, a, b, c, e, f←R Zp and obtain (P, P̂ , aP, bP,

bP̂ , cP, cP̂ , dP, eP, fP, aeP, aP̂ , bP, cP, rP, eP,gf). Then, if r = df we have a dis-
tribution as in D′8, whereas we have a distribution as in D′2 if r is random.

Taking all together, the advantage εD(κ) of a distinguisher between D1 and
D2 is bounded by εD(κ) ≤ 3 · εDDH(κ) + εDef. 11(κ) + εDef. 12(κ) and a distin-
guisher between D′1 and D′2 implies a distinguisher for one of the intermediate
distributions, which proves Lemma 1. ut
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By Claim 1 and Lemma 1, we know that under t-co-SDH∗i , the probability to
distinguish Game 1 and Game 2 is bounded by |Pr[S2]− Pr[S3]| ≤ εD(κ).

Game 3: As Game 2, but we set b = 1.

Transition - Game 2 → Game 3: In Game 2, all values are independent of b,
meaning that flipping b does not influence the distributions, i.e., Pr[S2] = Pr[S3].

Game 4: As Game 3, but we simulate the OLoR oracle as in the real game.

Transition - Game 3 → Game 4: Under the same argumentation as in Tran-
sition 2, we know that under t-co-SDH∗i the probability to distinguish Game 3
and Game 4 is bounded by |Pr[S3]− Pr[S4]| ≤ εD(κ).

Game 5: As Game 4, but we honestly compute the OR proof PoK with respect to
C3, C4,d

′, Π ′ and replace all calls to (ρM,SignR(ρM, sk)) by ChgRepR(M,σ, ρ,
pk).

Transition - Game 4 - Game 5: Under the same argumentation as in Transition
1, we know that Pr[S4] = Pr[S5].

Game 0 represents the anonymity game with b = 0, whereas Game 5 represents
the anonymity game with b = 1; both games are computationally indistinguish-
able. ut

C RABC Based on U-Prove’s Revocation Approach

The traditional paradigm for accumulator-based credential revocation requires
a typically rather complex ZKPK. Thereby, one firstly has to show that an
identifier nym encoded in the credential is identical to the value contained in a
non-membership witness of a universal accumulator scheme without revealing
the respective witness. This requires a ZKPK of a non-membership witness to
some nym and a proof of equality of this nym with the one contained in the shown
credential. Secondly, it requires to prove in zero-knowledge that this witness
satisfies the accumulator verification relation to demonstrate that nym has not
been revoked.

Now, to incorporate such a revocation approach into the ABC system of [HS],
the following modifications are required (see Scheme 4 for the resulting RABC
system). During (Obtain, Issue), the obtainer of the credential additionally has
to provide the issuer with a Pedersen commitment C2 ← nym · P + υQ (with
υ←R Z∗p) to nym to the issuer, and to conduct a ZKPK that the claimed nym is
equal to the nym contained in C2. On successful completion, the value C2 and
a random element T ∈ G1 are included into the credential. Furthermore, the
public parameters are augmented with two independent generators M,N ∈ G1.
Then, upon (Show,Verify), the following equality proof, which relates the nym
contained in both C2 (of the randomized credential) and an auxiliary commit-
ment D ← nym · M + t0N (with t0←R Z∗p), has to be conducted. Due to the
randomization that happens during each showing, proving this equality essen-
tially requires a proof of the following quadratic relation (cf. [BS02]) and as in
our first construction we additionally require a credential component C3 where

34



we need to prove knowledge of logT C3 for technical reasons:

PoK

(α, β, γ, δ, ε, ζ, τ) :
C3 = τT ∧ C4 = γP ∧

D = αM + βN ∧
γD = δM + εN ∧ C2 = δP + ζQ

 . (1)

It remains to describe the second part. Up to now, the most efficient universal
accumulator—suited for our setting—is an optimized version of Acc in Scheme 1,
which was used in [ACN13, NP14] as a revocation mechanism for U-Prove cre-
dentials. Here, also the W -part of the non-membership witness is computed in
G1 and a non-membership witness ωnym with respect to an accumulator ΠRNYM for
some nym ∈ NYM is extended by a third element V ← ΠRNYM +nym ·W −dP . This
value is chosen such that λW = V holds (observe that (λ−nym)W = ΠRNYM−dP
and, hence, λW = ΠRNYM + nym ·W − dP = V holds). Since this value can be
computed using only public information, this modification does not influence the
collision freeness of the accumulator scheme. Then, verifying non-membership
claims amounts to checking whether the following two equations hold:

V −ΠRNYM = nym ·W − dP (2) λW = V. (3)

Based on this modification, a ZKPK of non-membership for some nym ∈ NYM

looks as follows. For our illustrations, we assume that the proof in Equation (1)
was successful and that D is used as input for the proof in Equation (4). Fur-
thermore, we assume that a commitment to the accumulator secret key λN is
contained in the public key of the revocation authority. Then, the original values
of W and V are blinded by choosing t1←R Zp and computing W ← W + t1N
and V ← V + t1(λN). Finally, with t1, t2, t3←R Zp, the auxiliary commitments
R← t1M + t2N and S ← d−1M + t3N are computed and the following proof is
performed:

PoK


(
α, β, θ, ι, κ,
λ, µ, ν, ξ, π

)
:

D = αM + βN ∧ R = θM + ιN ∧
αR = κM + λN ∧ S = µM + νN ∧

πS = M + ξN ∧
V −ΠX = −αW + κN + θ(λN)− πP

 . (4)

Thereby, the last AND clause corresponds to a blinded version of Equation (2),
whereas the remaining clauses are required for proving that the nym encoded in
D corresponds to the non-membership witness used in the proof. It also ensures
that the non-membership witness is formed correctly, i.e., d 6= 0. In addition to

the PoK, Equation (3) must be checked to hold by means of checking e(W, λP̂ )
?
=

e(V, P̂ ) (as done in [ACN13]).
Finally, we note that the importance of the authenticity of the revocation

information in certain variants of U-Prove’s revocation approach was quite re-
cently pointed out in [HKK15]. There it is shown how to trace U-Prove tokens
via non-authentic revocation information, if the revocation information can not
be publicly verified and the revocation authority is dishonest. We emphasize
that these results do not apply to our approach, since every revocation-related
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Setup: Given (1κ, aux), parse aux ← (t, t′), run pp′ = (BG, (αiP )i∈[t], (α
iP̂ )i∈[t]) ←

SetupPC(1κ, t). Then, let Hs : {0, 1}∗ → Z∗p be a collision-resistant keyed hash
function used inside enc(·), which is drawn uniformly at random from a family
of collision-resistant keyed hash functions {(Hs, s)}s∈S . Finally, choose Q,T ←R G1

and output pp← (Hs, enc, Q, T, pp
′, t′).

RAKeyGen: Given pp, choose λ←R Z∗p, compute pkΠ = ((λiP )i∈[t′], (λiP̂ )i∈[t′]) and

choose M,N ←R G1. Set (rsk, rpk)← (λ, (pkΠ ,M,N, λN)) and return (rsk, rpk).
OrgKeyGen: Given pp, return (osk, opk)← KeyGenR(BG, ` = 4).
UserKeyGen: Given pp, pick r←R Z∗p and return (usk, upk)← (r,R) with R← rP .
(Obtain, Issue): Obtain and Issue interact in the following way:

Issue(pp, rpk, upki, oskj , nym,A) Obtain(pp, uski, opkj , nym,A)

e(C1, P̂ )
?
= e(Ri, enc(A)(α)P̂ ) υ←R Z∗p, (C1, C2)←

C1,C2←−−−− (rienc(A)(α)P, nym · P + υQ)
PoK←−→

σ ← SignR((C1, C2, T, P ), oskj)
σ−→ VerifyR((C1, C2, T, P ), σ, opkj)

?
= 1

crednym ← ((C1, C2, T, P ), σ)

where PoK is: PoK{(α) : C2 = nym · P + αQ}.
(Show,Verify): Show and Verify interact in the following way, where RV = Π ← R[1]

and Rnym
S = (Π, (W,V, d))← (R[1],R[2][nym]):

Verify(pp, rpk, opkj ,A
′,RV ) Show(pp, rpk, uski, opkj , crednym,A,A

′,Rnym
S )

cred← ChgRepR(crednym, ρ, opkj)

CA′ ← (ρ · ri) · enc(A′)(α)P

t0, t1, t2, t3←R Zp, V ← V + t1(λN),
W ←W + t1N , D ← nym ·M + r∗N

R← t1M + t2N,[
VerifyR(cred, opkj) ∧

cred,CA′ ,W,V,D,R,S←−−−−−−−−−−−−− S ← d−1M + t3N

VerifyFactorPC(pp′, C1, enc(A′), CA′)
∧ e(W, λP̂ )

?
= e(V, P̂ )

]
?
= 1 PoK←−→

where cred = ((C1, C2, C3, C4), σ) and PoK is:

PoK


α, β, γ, δ, ε,
ζ, η, θ, ι, κ, λ,
µ, ν, ξ, π, τ

 :

Q = ηP ∨ (C3 = τT ∧ C4 = γP ∧
D = αM + βN ∧ γD = δM + εN ∧
C2 = δP + ζQ ∧ R = θM + ιN ∧

αR = κM + λN ∧ S = µM + νN ∧
πS = M + ξN ∧

V −ΠX = −αW + κN + θ(λN)− πP )


.

Revoke: Given pp, (rsk, rpk), NYM and RNYM, this algorithm computes Π ←
EvalAcc(RNYM, (skΠ , pkΠ)). For all nym ∈ NYM it computes (Wnym, dnym) ←
WitCreateAcc(Π, RNYM, nym, (skΠ , pkΠ)), Vnym ← Π + nym · W − dP and sets
WIT[nym] ← (Wnym, Vnym, dnym). Note that Wnym is evaluated in G1 here. Finally,
it returns R← (Π, WIT).

Scheme 4: Multi-Show RABC System Adapting U-Prove Revocation
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computation can be publicly verified and our model requires honestly generated
revocation keys. Another recent work [HKK14] describes an attack on the in-
stantiation of the revocation-related ZKPKs for U-Prove proposed in [ACN13].
But we note that this attack builds upon a wrong interpretation due to incon-
sistencies in the notation of [ACN13] and thus has no practical relevance.

C.1 Security of the RABC System

Theorem 5. The RABC system in Scheme 4 is correct.

The correctness of Scheme 4 follows from inspection.

Theorem 6. If PolyCommitFO is factor-sound, {(Hs, s)}s∈S is a collision-res-
istant hash function family, the underlying SPS-EQ-R is EUF-CMA secure and
perfectly adapts signatures, Acc is collision-free and the DDH assumption holds
in G1, then Scheme 4 is unforgeable.

Proof. We assume that there is an efficient adversary A winning the unforgeabil-
ity game with non-negligible probability, then we are able to use A for reductions
in the following way.

Type 1: Adversary A manages to conduct a showing protocol accepted by the
verifier such that nym∗ = ⊥ holds. Then, we construct an adversary B that
uses A to break the unforgeability of the SPS-EQ-R scheme.

Type 2: Adversary A manages to conduct a showing protocol accepted by the
verifier using the credential of user i∗ under nym∗ with respect to A′∗ such
that A′∗ 6v ATTR[nym∗] holds. Then, we construct an adversary B that uses
A to break
Type 2A: collision-resistance of the hash function used in the encoding

enc(·) of attributes.
Type 2B: the factor soundness of PolyCommitFO.

Type 3: Adversary A manages to conduct a showing protocol accepted by the
verifier reusing a showing based on the credential of user i∗ under nym∗ with
i∗ ∈ HU\KU, whose secret uski∗ and credentials it does not know. This means
that in any case A is able to produce a valid PoK. Then,
Type 3A: we construct an adversary B that uses A to break the DLP in

G1 (with respect to Q).
Type 3B: we show that the success probability ofA is bounded by εDDH(κ)+

εDL(κ), where εDDH(κ) and εDL(κ) are the success probabilities for DDH
and DLP in G1.

Type 4: Adversary A manages to conduct a showing protocol accepted by the
verifier using some credential corresponding to a revoked pseudonym nym∗ ∈
RN. Then, we construct an adversary B that uses A to break the collision-
freeness of the accumulator scheme Acc.

In the following, B guesses A’s strategy, i.e., the type of forgery A will conduct.
We are now going to describe the setup, the initialization of the environment,
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the reduction and the abort conditions for each type. For the PoK, we assume
that the reduction always aborts if the respective discrete logarithm cannot be
extracted because the wrong part of the OR statement was honestly computed.
In Type 3B we make the abort probability explicit, whereas it is omitted in the
other cases.

Type 1: Analogously to the Type 1 unforgeability proof of Scheme 2.

Type 2: Analogously to the Type 2 unforgeability proofs of Scheme 2.

Type 3A: Analogously to the Type 3A unforgeability proof of Scheme 2.

Type 3B: In the following, we will show that the success probability of a Type-
3B adversary is bounded by εDDH(κ) + εDL(κ). In all games, the setup is as in
the original game, with the following differences. Upon generation of the public
parameter pp—instead of choosing Q at random—one chooses q, t←R Z∗p and sets
Q ← qP, T ← tP . Then, the environment stores q, t as well as the trapdoors α
and λ used for generating the tuples (αiP )ti=0, (α

iP̂ )ti=0 and (λiP )ti=0, (λ
iP̂ )ti=0

contained in pp.

Game 0: The original unforgeability game.

Game 1: As Game 0, but the PoK in all showings is conducted by honestly
proving knowledge of q and simulating the proof part for the remainder.

Transition 1 - Game 0 → Game 1: Since the witness indistinguishability of the
OR proof is unconditional, we have that Pr[S1] = Pr[S0].

Game 2: As Game 1, except that all calls to ChgRepR(M,σ, ρ, pk) are replaced
by (ρM,SignR(ρM, sk)).

Transition 2 - Game 1 → Game 2: Since Scheme 3 perfectly adapts signatures,
we have Pr[S2] = Pr[S1].

Game 3: As Game 2, but if A delivers a valid showing using a credential cred∗,
then B rewinds A to the step after sending the commitments in PoK and restarts
A with a new challenge c′ 6= c. Then, by the knowledge extractor of PoK (for the
C4-part of the proof), B obtains ρ∗ ∈ Z∗p and can find out the pseudonym nym∗ of

cred′∗ via computing cred∗0 ← ρ−1cred′∗[0] on the message part of the credential.
Let F denote the event that there is no cred′ ∈ CRED such that cred′[0] = cred∗0
or if i∗nym∗ 6∈ HU \ KU. If F occurs, then B aborts.

Transition 3 - Game 2→ Game 3: Game 3 is equivalent to Game 2, unless abort
event F happens. Event F occurs if and only if A is no Type-3B adversary, i.e.,
Pr[F ] = 6/7. Thus, Pr[S3] = Pr[¬F ] ·Pr[S2] = (1−Pr[F ]) ·Pr[S2] = 1/7 ·Pr[S2].

Game 4: As in Game 3, but B obtains the instance (BG, aP ) with BG =
(p,G1,G2,GT , e, P, P̂ ) to the DLP in G1 and generates the public parameters
pp based on BG. Furthermore, B simulates the oracles as in a real game, except
for the oracle OUV , which is simulated as follows:

OUV(opk, nym,A′,RV ): B runs this oracle as in a real game, with the difference
that B computes a credential cred ← (M,σ) with M ← (ρ · USK[inym][0] ·
enc(ATTR[nym])P, nym ·P+υQ, ρt ·aP, ρ ·P ), with ρ←R Zp and σ ← SignR(M,
osk). The showing is then performed with respect to cred.
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Transition 4 - Game 3 → Game 4: We have to show that the adversary can-
not detect that the showings in OUV are performed with respect to a different
credential component C3. To do so, we define the following two distributions
containing the exchanged value C3 and all other values containing discrete log-
arithms related to ρ and q (since we will base our indistinguishability proof on
these values). Thereby, D1 resembles the distribution as in a real oracle simula-
tion, whereas D2 resembles the distribution after exchanging the C3 component
of the credential. Both distributions are defined with respect to the adversary’s
view V on the system.

D1(V ) :≡
[(
enc(A)ri · ρP, nym · ρP + υq · ρP, ρtP, ρP, tP, enc(A′)(α)ri · ρP

)]
≈

D2(V ) :≡
[(
enc(A)ri · ρP, nym · ρP + υq · ρP, a · ρtP, ρP, tP, enc(A′)(α)ri · ρP

)]
.

To see thatD1(V ) andD2(V ) are indistinguishable, we introduce an intermediate
distribution D3:

D3(V ) :≡
[
b←R Zp,

(
enc(A)ri·ρP, nym·ρP+υq·ρP, bP, ρP, tP, enc(A′)(α)ri·ρP

)]
.

Now, assume a DDH instance (P, ρP, tP, rP ) and observe that this instance can
be padded to the distributions in D1 and D3 since we know all required discrete
logarithms. Then, we have a distribution as in D1(V ) if r = ρt, whereas we have
a distribution as in D3(V ) if r is random.

Furthermore, D3 and D2 are identically distributed, since a is only contained
in a · ρtP and (BG, aP ) is a random DLP instance. All in all, we have |Pr[S3]−
Pr[S4]| ≤ εDDH(κ).

Game 5: As Game 4, but B additionally obtains ρ∗a by the knowledge extractor
of PoK (for the C3 part of the credential).

Transition 5 - Game 4 → Game 5: Since this change is only conceptual, we have
that Pr[S4] = Pr[S5].

In Game 5, B can compute a← ρ∗a
ρ∗ as a solution to the given DLP instance in G1,

i.e., Pr[S5] = εDL(κ). We have Pr[S0] = Pr[S1] = Pr[S2] = Pr[S3]
Pr[¬F ] . Furthermore,

we have that |Pr[S3] − Pr[S4]| ≤ εDDH(κ), yielding Pr[S3] ≤ Pr[S4] + εDDH(κ)
and Pr[S4] = Pr[S5] = εDL(κ). Taking all together, we have Pr[¬F ] · Pr[S0] =
Pr[S3] ≤ εDDH(κ) + εDL(κ) and thus Pr[S0] ≤ 1/Pr[¬F ] · (εDDH(κ) + εDL(κ)) =
7 · (εDDH(κ) + εDL(κ)).

Type 4: Here, B consists of adversary A playing the unforgeability game with a
challenger S. B is interacting with the challenger C in the collision-freeness game
of the accumulator scheme Acc. Subsequently, we describe how S simulates the
environment for A and interacts with the challenger C.
B obtains the accumulator public key pkΠ ← (BG, (λiP )t

′

i=0, (λ
iP̂ )t

′

i=0) from
C. Then, S completes the setup and initializes rpk and the organization key pair
(osk, opk) in a way compatible with pkΠ . S runs A(pp, opk, rpk) and simulates
all oracles as in a real game. If A outputs (A′∗, state), then S runs A(state) and
interacts with A as verifier in a showing protocol. Now, if A delivers a valid
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showing using a credential cred∗, then S rewinds A to the step after sending the
commitments in PoK and restarts A with a new challenge c′ 6= c. Rewinding
allows to obtain the used non-membership witness (W ∗, V ∗, d∗) and the used
credential randomizer ρ, by the extraction of the corresponding discrete log-
arithms. S now computes cred∗0 ← ρ−1 · cred′∗[0] on the message part of the
credential. Let cred′ ∈ CRED be such that cred′[0] = cred∗0. If there is no such
cred, then S and, in further consequence, B aborts. Otherwise, let nym∗ be such
that cred′ = CRED[nym∗]. If nym∗ /∈ RN, then S aborts. Otherwise, we know that
the extracted witness (W ∗, V ∗, d∗) yields a correct evaluation of the verifica-
tion relation, even though the corresponding nym has been revoked. Thus, B
outputs ((W ∗, V ∗, d∗), nym∗, RNYM) as a non-membership witness for an accumu-
lated value, giving a collision for the accumulator. ut

Theorem 7. If the underlying SPS-EQ-R perfectly adapts signatures and the
DDH assumption in G1 holds, then Scheme 4 is anonymous.

Proof. Analogous to the anonymity proof of Scheme 2, we prove anonymity using
a sequence of games, where each game is indistinguishable from the previous one.
Henceforth, we denote the event that an adversary wins Game i by Si. In all
games, the setup is as in the original game, with the following differences. Upon
generation of the public parameter pp—instead of choosing Q at random—one
chooses q, t←R Z∗p and sets Q← qP, T ← tP . Then, the environment stores q, t as

well as the trapdoors α and λ used for generating the tuples (αiP )ti=0, (α
iP̂ )ti=0

and (λiP )ti=0, (λ
iP̂ )ti=0 contained in pp.

Game 0: The original anonymity game with b = 0.

Game 1: As Game 0, but the PoK in all showings is conducted by proving
knowledge of q and simulating the proof part for the remainder. Furthermore,
all calls to ChgRepR(M,σ, ρ, pk) are replaced by (ρM, SignR(ρM, sk)).

Transition 1 - Game 0 → Game 1: Since the witness indistinguishability of the
OR proof is unconditional and Scheme 3 perfectly adapts signatures, we have
that Pr[S1] = Pr[S0].

Game 2: As Game 1, except for the oracle OLoR, which is simulated as follows:

OLoR(osk, opk, rsk, rpk, b, nym0, nym1,A′,RV ): As in a real game, but the show-
ing is simulated independently of bit b as follows. S chooses a message
(M1,M2,M3,M4)←R (G∗1)4, sets the shown credential cred← ((M1,M2,M3,
M4), σ), with σ ← SignR((M1,M2,M3,M4), osk). Furthermore, S computes
CA′ ←

1
enc(A′)(α)C1 using trapdoor α. It chooses ξ←R Z∗p, computes V ← ξλP ,

W ← ξP and chooses R←R G1, S←R G1, D←R G1.

Transition Game 1 → Game 2: To show that the game change is indistinguish-
able, we have to show that the adversary will not detect that the showings in
ORoR are performed with respect to a random credential. To do so, we define
the adversary’s view V on the system. In particular, in V we only consider those
values, which are crucial to proving anonymity with respect to one particular
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showing.

V =
(
P, P̂ ,Q, T,M,N, λP, enc(A)(α)P, enc(A)(α)P̂ ,

enc(A′)(α)P, enc(A′)(α)P̂ ,W, Ŵ ,Π, Π̂, Ri, rienc(A)P, nymP + υQ,W,V,
R, S,D,C4, C3, C2, C1, CA′

)
.

Subsequently, we consider the two summands of nymP+υQ as separate elements,
since the adversary can obtain them upon issuing. For our further illustrations,
we make the discrete logarithms to the bases P, P̂ ,Q,M,N, T explicit.

V =
(
P, P̂ ,Q, T,M,N, λP, eP, eP̂ ,

eP, eP̂ , wP,wP̂ , aP, aP̂ , riP, rieP, nP, υQ,wP + t1N,λ(wP + t1N),

t1M + t2N, d
−1M + t3N,nM + t0N, ρP, ρT, ρ(nP + υQ), ρrieP, ρrieP

)
.

Now, to distinguish between Game 2 and Game 3, the adversary is required to
distinguish the distributions D1(V ) and D2(V ), which are defined as follows:

D1(V ) :≡
[(
P, P̂ ,Q, T,M,N, λP, eP, eP̂ ,

eP, eP̂ , wP,wP̂ , aP, aP̂ , riP, rieP, nP, υQ,wP + t1N,λ(wP + t1N),

t1M + t2N, d
−1M + t3N,nM + t0N, ρP, ρT, ρ(nP + υQ), ρrieP, ρrieP

)]
.

D2(V ) :≡
[
a, b, c, d, e, f←R Zp,

(
P, P̂ ,Q, T,M,N, λP, eP, eP̂ ,

eP, eP̂ , wP,wP̂ , aP, aP̂ , riP, rieP, nP, υQ, aP, λaP,

bP, cP, dP, ρP, ρT, eP, fP, fe−1eP
)]
.

Observe that both, the left and the right distribution in Game 2, are distributed
as D1(V ), whereas D2(V ) is distributed as the output of OLoR in Game 3. Note
that in this case all relevant values involved in the distribution changes are
already drawn uniformly at random in the original game. Thus, we can directly
prove Lemma 2 with respect to the distributions parametrized by V .

Lemma 2. If the DDH assumption holds in G1, then for every PPT adversary
A the probability to distinguish D1(V ) from D2(V ) is bounded by 2 · εDDH(κ).

Proof (of Lemma 2). We show that—under the DDH assumption in G1—the
probability to distinguish D1(V ) from D2(V ) is bounded by a negligible function
in the security parameter κ. We do so, by a sequence of intermediate distribu-
tions. We start by defining D3:

D3(V ) :≡
[
a, b, c, d←R Zp,

(
P, P̂ ,Q, T,M,N, λP, eP, eP̂ ,

eP, eP̂ , wP,wP̂ , aP, aP̂ , riP, rieP, nP, υQ, aP, λaP,

bP, cP, dP, ρP, ρT, ρ(nP + υQ), ρrieP, ρrieP
)]
.
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It is easy to see that D1(V ) and D3(V ) are indistinguishable, since the respec-
tive values in D1(V ) represent unconditionally hiding Pedersen commitments.
Subsequently, we introduce D4:

D4(V ) :≡
[
a, b, c, d, e←R Zp,

(
P, P̂ ,Q, T,M,N, λP, eP, eP̂ ,

eP, eP̂ , wP,wP̂ , aP, aP̂ , riP, rieP, nP, υQ,

aP, λaP, bP, cP, dP, ρP, ρT, eP, ρrieP, ρrieP
)]
.

To see that D3(V ) and D4(V ) are indistinguishable, assume a DDH instance
(P, ρP, υP, rP ). Now, we can pad this instance to (P, P̂ , qP, tP,M,N, λP, eP, eP̂ ,
eP, eP̂ , wP,wP̂ , aP, aP̂ , riP, rieP, nP, q ·υP, aP, λaP, bP, cP, dP, ρP, t·ρP, n·ρP+
q ·rP, rie·ρP, rie·ρP ), using e, e, w, a, ri, n, q, a, λ, b, c, d, t. Then, we have a distri-
bution as in D3(V ) if (P, ρP, υP, rP ) is a valid DDH instance and a distribution
as in D4(V ) if r is random. Below, we introduce D5:

D5(V ) :≡
[
a, b, c, d, e, f←R Zp,

(
P, P̂ ,Q, T,M,N, λP, eP, eP̂ ,

eP, eP̂ , wP,wP̂ , aP, aP̂ , riP, rieP, nP, rQ, aP, λaP,

bP, cP, dP, ρP, ρT, eP, feP, feP
)]
.

To see that D4(V ) and D5(V ) are indistinguishable, assume a DDH instance
(P, ρP, riP, rP ). Now, we can pad this instance to (P, P̂ , qP, tP,M,N, λP, eP, eP̂ ,
eP, eP̂ , wP,wP̂ , aP, aP̂ , riP, e · riP, nP, υQ, aP, λaP, bP, cP, dP, ρP, t · ρP, eP, e ·
rP, e · rP ), using e, e, w, a, n, q, a, λ, b, c, d, e, t. Then, we have a distribution as in
D4(V ) if (P, ρP, riP, rP ) is a valid DDH instance and a distribution as in D5(V )
if r is random.

Finally, it is easy to see that D5 and D2 are identically distributed. A mul-
tiplication of feP and feP by e−1 does not change the distribution: f is random
and not contained in other elements and, hence, unconditionally hides e−1.

Taking all together, the advantage of any PPT adversary to distinguish
D1(V ) from D2(V ) is negligible and bounded by εD(κ) ≤ 2 · εDDH(κ), which
proves Lemma 2. ut

By Lemma 2 we know that |Pr[S2]− Pr[S3]| ≤ εD(κ).

Game 3: As Game 2, but we set b = 1.

Transition - Game 2 → Game 3: In Game 2, all values are independent of b,
meaning that flipping b does not influence the distributions, i.e., Pr[S2] = Pr[S3].

Game 4: As Game 3, but we simulate the OLoR oracle as in the real game.

Transition - Game 3→ Game 4: Under the same argumentation as in Transition
2, we know that the probability to distinguish Game 3 and Game 4 is bounded
by |Pr[S3]− Pr[S4]| ≤ εD(κ).

Game 5: As Game 4, but we honestly compute the OR proof PoK with respect to
C3, C4,d

′, Π ′ and replace all calls to (ρM,SignR(ρM, sk)) by ChgRepR(M,σ, ρ,
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pk).

Transition - Game 4 - Game 5: Under the same argumentation as in Transition
1, we know that Pr[S4] = Pr[S5].

Game 0 represents the anonymity game with b = 0, whereas Game 5 represents
the anonymity game with b = 1; both games are computationally indistinguish-
able. ut
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